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ABSTRACT 

The fifth industrial revolution, known as Industry 5.0 (IR5.0), is on its way to of integrating 

humans at the centre of production processes, resulting in creative industrial collaborative 

workplace designs. Collaborative robots, or cobots, enable enterprises to improve their social 

sustainability while maintaining efficiency. The deployment of these devices pave the way for 

human-robot collaboration (HRC), which combines the benefits of automation, such as 

efficiency and precision, with the versatility and soft skills of humans. Psychophysiological 

measurements in HRC, through the deployment of non-invasive, compact, and versatile 

sensors, can be used to identify and analyse the human's physiological responses, like the 

mental workload (MWL), to the robot engagement. In this sense, Neuroergonomics enables a 

more accurate estimation of the workload of the operator executing a task. MWL reflects the 

amount of mental effort required by an employee to complete a task.  

The PhD work presents a comparative analysis of three laboratory experimental scenarios: in 

the first, the participant assembles a component without the intervention of the robot (Standard 

Scenario); in the second scenario, the participant performs the same activity in collaboration 

with the robot (Collaborative Scenario); in the third scenario, the participant gets fully guided 

task in collaboration with the robot (Collaborative Guided Scenario). EEG analysis was applied 

to objectively and real-time assess mental workload. To decrease noise and artefacts, the data 

were pre-processed using several procedures such as Independent Component Analysis (ICA). 

The mental workload was calculated using a formula that correlated the most intense waves 

from the scalp during the analysis. The analysis was connected with questionnaires and 

observational data to evaluate the effectiveness of the task completed by the participant in the 

three different scenarios, as well as the impact of the cobot on the workforce. 

The goal of this analysis is to show the different responses of participants while working or not 

alongside the robot in terms of mental workload, efficiency, and productivity of the task.  

Key words: Collaborative Robotics, Neuroergonomics, Industry 5.0, Human-Robot 

Collaboration, Mental Workload, Lean Manufacturing 

 

 

 

 

  



REZIME 

Peta industrijska revolucija, poznata kao Industrija 5.0 (IR5.0), je na putu da integriše ljude u 

centar proizvodnih procesa, što rezultira kreativnim industrijskim kolaborativnom 

organizacijom radnog mesta. Kolaborativni roboti ili koboti, omogućavaju kompanijama da 

poboljšaju svoju društvenu održivost uz održavanje efikasnosti. Primena ove opreme otvara 

put saradnji čoveka i robota (HRC), koja kombinuje prednosti automatizacije, kao što su 

efikasnost i preciznost, sa svestranošću i mekim veštinama ljudi. Psihofiziološka merenja u 

saradnji čoveka i robota, kroz primenu neinvazivnih, kompaktnih i raznovrsnih senzora, mogu 

se koristiti za identifikaciju i analizu ljudskih fizioloških odgovora, poput mentalnog 

opterećenja (MWL), na zajednički rad sa robotom. U tom smislu, neuroergonomija omogućava 

tačniju procenu opterećenja operatera koji izvršava zadatak. MWL odražava količinu 

mentalnog napora potrebnog od strane zaposlenog da završi zadatak.  

Doktorska disertacija predstavlja komparativnu analizu tri laboratorijska eksperimentalna 

scenarija: u prvom, učesnik sprovodi proces montaže komponente bez intervencije robota 

(standardni scenario); u drugom scenariju, učesnik obavlja istu aktivnost u saradnji sa robotom 

(kolaborativni scenario); u trećem scenariju, učesnik dobija potpuno vođen zadatak u saradnji 

sa robotom (vođen kolaborativni scenario). EEG analiza je primenjena za objektivnu procenu 

mentalnog opterećenja u realnom vremenu. Da bi se smanjila buka i artefakti, podaci su 

prethodno obrađeni korišćenjem nekoliko procedura kao što je analiza nezavisnih komponenti 

(ICA). Mentalno opterećenje je izračunato korišćenjem formule koja je povezivala 

najintenzivnije talase sa kože glave tokom analize. Analiza je povezana sa upitnicima i 

opservacionim podacima kako bi se procenila efikasnost zadatka koji je učesnik obavio u tri 

različita scenarija, kao i uticaj kobota na radnu snagu. 

Cilj ove analize je da pokaže različite odgovore učesnika dok rade ili ne zajedno sa robotom u 

smislu mentalnog opterećenja, efikasnosti i produktivnosti zadatka. 

. 

Ključne reči: Kolaborativna Robotika, Neuroergonomija, Industrija 5.0, Saradnja čovek-

robot, Mentalno opterećenje, Lean proizvodnja 

  



CONTENT 

 
1. INTRODUCTION ............................................................................................................................. 1 

1.1 CONTEXT AND MOTIVATION ................................................................................................ 1 

1.2 BASIC HYPHOTHESES ............................................................................................................. 2 

1.3 STRUCTURE OF THE WORK ................................................................................................... 3 

1.4 DESIGN OF EXPERIMENTS ..................................................................................................... 4 

1.5 EXPECTED RESULTS ................................................................................................................ 4 

1.6 THE LIST OF PUBLISHE WORKS ............................................................................................ 5 

2. LITERATURE REVIEW ................................................................................................................ 7 

2.1 INDUSTRY 5.0 OVERVIEW ...................................................................................................... 7 

2.2 LEAN MANUFACTURING ........................................................................................................ 9 

2.2.1 Metrics deployed in Lean Manufacturing ............................................................................ 10 

2.2.2 Measurement of the Lean Manufacturing Parameters ......................................................... 12 

2.2.3 Key Performance Indicators (KPIs) ..................................................................................... 13 

2.3 HUMAN ROBOT COLLABORATION (HRC) ........................................................................ 14 

2.3.1 General overview ................................................................................................................. 14 

2.3.2 The Origins of Robots .......................................................................................................... 15 

2.3.3 The Rise of Collaborative Robots (Cobots) ......................................................................... 16 

2.3.4 Mechanical Design of Cobots .............................................................................................. 19 

2.3.5 Degrees of Freedom (DOFs) of Cobots ............................................................................... 20 

2.3.6 Difference between Industrial Traditional Robots and Industrial Cobots ........................... 21 

2.3.7 Cobots’ Market Growth ....................................................................................................... 22 

2.3.8 Safety in Human Robot Collaboration ................................................................................. 25 

2.3.9 Choice of Cobot’s End-Effector .......................................................................................... 30 

2.3.10 Key Performance Indicators in Human Robot Collaboration ............................................ 31 

2.4 ERGONOMICS IN HRC ............................................................................................................ 33 

2.5 PHYSIOLOGICAL MEASUREMENTS ................................................................................... 35 

2.6 PERFORMANCE-BASED MEASUREMENTS ....................................................................... 36 

2.7 NEUROERGONOMICS AND MENTAL WORKLOAD ......................................................... 36 

2.7.1 Mental Workload ................................................................................................................. 38 

2.7.2 How to measure Mental Workload ...................................................................................... 42 

2.7.3 Cobot and MWL .................................................................................................................. 43 

2.8 ELECTROENCEPHALOGRAM MEASUREMENT (EEG) .................................................... 45 

2.8.1 EEG’s Metrics ...................................................................................................................... 49 

2.9 BRAIN COMPUTER INTERFACE (BCI) ................................................................................ 50 



2.9.1 Other BCI’s Approaches ...................................................................................................... 51 

3. DESIGN OF EXPERIMENTS ...................................................................................................... 53 

3.1 COMPARATIVE ANALYSIS ................................................................................................... 55 

3.2 PARTICIPANT SELECTION .................................................................................................... 56 

3.3 EXPERIMENTAL DESIGN ...................................................................................................... 59 

3.4 COLLABORATIVE SCENARIO .............................................................................................. 64 

3.4.1 Risk Assessment for the Implementation of the Cobot ........................................................ 68 

3.5 COLLABORATIVE GUIDED SCENARIO .............................................................................. 70 

4. NEUROERGONOMIC ASSESSMENT AND EEG PRE-PROCESSING................................ 73 

4.1 EEG PRE-PROCESSING SET-UP ............................................................................................ 76 

4.1.1 Significance of the Results through Statistical Analysis ..................................................... 78 

4.2 MENTAL WORKLOAD RESULTS THROUGH THE EEG ANALYSIS ............................... 79 

5. SUBJECTIVE AND OBSERVATIONAL MEASUREMENTS ................................................. 83 

6. DISCUSSION AND IMPLICATION OF THE WORK.............................................................. 91 

7. CONCLUSION ............................................................................................................................... 95 

LITERATURE .................................................................................................................................... 97 

ANNEX 1: EXPERIMENT SET-UP PROTOCOL ....................................................................... 115 

ANNEX 2: QUESTIONNAIRE FOR PERTICIPANTS ............................................................... 117 

AUTHOR’S BIOGRAPHY .............................................................................................................. 118 

 

  



List of Figures 
 

Label Figure Name 

Figure 2.1 Industrial Revolution Phases 

Figure 2.2 Key pillars of Industry 5.0 

Figure 2.3 Map of the robot’s evolution in the Modern Era 

Figure 2.4 The benefits of a hybrid (collaborative) scenario. 

Figure 2.5 Overview of HRC applications and the connection between the grade of 

interaction and productivity index level 

Figure 2.6 Overview of the Mechanical Design of Cobots 

Figure 2.7 Robotic workplace differences  

Figure 2.8 Cobots vs Industrial Robots 

Figure 2.9 Estimated annual worldwide supply of industrial robots 

Figure 2.10 Annual Installation Growth of traditional robots and cobots from 2021 

to 2022 

Figure 2.11 Estimated number of industrial robots per ‘000 units in the countries 

worldwide 

Figure 2.12 4 modes of Human-Robot Collaboration 

Figure 2.13 Different degrees of HRI 

Figure 2.14 Guidelines for HRC 

Figure 2.15 Types of grippers 

Figure 2.16 Mental Workload as the gap between the Available Capacity and the 

Demand of the primary task 

Figure 2.17 Ebbingaus Forgetting Curve 

Figure 2.18 Miller’s Law Curve 

Figure 2.19 The Yerkes-Dodson Law 

Figure 2.20 Neural Activity of the brain 

Figure 2.21 International 10’-20’ System 

Figure 2.22 Classification of brain waves through EEG analysis 

Figure 2.23 Real-Time Acquisition of Signals through Brain Computer Interface 

Figure 3.1 General model of a process or system 

Figure 3.2 G*Power analysis results 

Figure 3.3 Set up of the Workplace Environment  

Figure 3.4 Conceptualization of the three different scenarios 



Label Figure Name 

Figure 3.5a Standard Scenario (SS) 

Figure 3.5b Collaborative Scenario (CS) 

Figure 3.6a Guided Collaborative Scenario (GCS) 

Figure 3.6b Particularity of the third scenario: the presence of P-Y principles 

through number labels 

Figure 3.7a Assembly components used for the laboratory experiments 

Figure 3.7b Components in real case scenarios 

Figure 3.8 Mitsubishi MELFA ASSISTA cobot 

Figure 3.9 Mitsubishi MELFA ASSISTA cobot Architecture 

Figure 3.10 VGC10 Electrical Vacuum Gripper. 

Figure 3.11 Sequential collaboration: cobot and gripper action logic 

Figure 3.12 Risk assessment matrix for the implementation of the cobot in the 

workplace 

Figure 3.13 Collaborative Guided Scenario Set up 

Figure 3.14 Quality Inspection Phase 

Figure 4.1 Electroencephalogram (EEG) gel-based cap 

Figure 4.2 International 10-20 System – view from the software. 

Figure 4.3 Set up of the LSL software with other modules 

Figure 4.4 Flowchart of the EEG pre-processing phase 

Figure 4.5 Mental Workload (Y-axis) over the participants (X-axis), in three 

consecutive parts (30 minutes each) analysed in the standard (SS – 

highlighted in dashes), collaborative scenario (CS – highlighted in 

scatters), and collaborative guided scenario (CGS – highlighted in 

dashes). 

Figure 4.6 MWL variation (Y axis) between the three consecutive parts of the task 

session (30 minutes each) analyzed in the three scenarios 

Figure 5.1 NASA TLX results in the three scenarios over the participants (X axis): 

(a) Mental workload; (b) Physical workload; (c) Temporal Demand; (d) 

Performance; (e) Effort; (f) Frustration 

Figure 5.2 Number of assembly components accomplished correctly in the three 

scenarios – Y axis – over the participants – X axis 

Figure 5.3 Time Task in the three scenarios – Y axis – over the participants – X 

axis 

Figure 5.4 Productivity Index (in %) in the three scenarios – Y axis – over the 

participants – X axis 

 

 



List of Tables 
 

Labels Table Name 

Table 2.1 
Overview of the distinctive KPI’s adopted in some research studies 

dealing with Productive, Economic, Safety, and Ergonomics aspects 

Table 3.1 Characteristics of the participants 

Table 4.1 Mental Workload Index (MWL) - Standard Scenario (SS). 

Table 4.2 
Mental Workload Index (MWL) - Collaborative Scenario (with robot - 

CS). 

Table 4.3 
Mental Workload Index (MWL) - Collaborative Guided Scenario (with 

robot and P-Y design – CGS. 

Table 4.4 Mental Workload Index (MWL) difference - Standard Scenario (SS). 

Table 4.5 
Mental Workload Index (MWL) difference - Collaborative Scenario 

(with robot - CS). 

Table 4.6 
Mental Workload Index (MWL) - Collaborative Guided Scenario (with 

robot and P-Y design - CGS). 

Table 5.1 

NASA TLX – Mental Workload level results of the participants in the 

three scenarios (Standard Scenario – SS, Collaborative Scenario with 

robot – CS, Collaborative Guided Scenario with robot and Poka-Yoke 

design - CGS). 

Table 5.2 

NASA TLX – Physical Workload level results of the participants in the 

three scenarios (Standard Scenario – SS, Collaborative Scenario with 

robot – CS, Collaborative Guided Scenario with robot and Poka-Yoke 

design - CGS). 

Table 5.3 

NASA TLX – Temporal Demand level results of the participants in the 

three scenarios (Standard Scenario – SS, Collaborative Scenario with 

robot – CS, Collaborative Guided Scenario with robot and Poka-Yoke 

design - CGS). 

Table 5.4 

NASA TLX – Performance level results of the participants in the three 

scenarios (Standard Scenario – SS, Collaborative Scenario with robot – 

CS, Collaborative Guided Scenario with robot and Poka-Yoke design - 

CGS). 

Table 5.5 

NASA TLX – Effort level results of the participants in the three 

scenarios (Standard Scenario – SS, Collaborative Scenario with robot – 

CS, Collaborative Guided Scenario with robot and Poka-Yoke design - 

CGS). 

Table 5.6 

Frustration level results of the participants in the three scenarios 

(Standard Scenario – SS, Collaborative Scenario with robot – CS, 

Collaborative Guided Scenario with robot and Poka-Yoke design - 

CGS). 



Labels Table Name 

Table 5.7 

Number of components accomplished by the participants in the three 

scenarios (Standard Scenario – SS, Collaborative Scenario with robot – 

CS, Collaborative Guided Scenario with robot and Poka-Yoke design - 

CGS). 

Table 5.8 

Time of the task accomplished by the participants to complete the tests 

the three scenarios (Standard Scenario – SS, Collaborative Scenario 

with robot – CS, Collaborative Guided Scenario with robot and Poka-

Yoke design - CGS). 

Table 5.9 

Productivity index achieved by the participants to complete the tests the 

three scenarios (Standard Scenario – SS, Collaborative Scenario with 

robot – CS, Collaborative Guided Scenario with robot and Poka-Yoke 

design - CGS). 

 

 

 



1 

 

1. INTRODUCTION 

1.1 CONTEXT AND MOTIVATION 

The fifth industrial revolution, or Industry 5.0 (IR5.0), considers humans as the core of 

production processes, designing new industrial collaborative workspaces. In contrast to the 

previous four industrial revolutions, which aimed to marginalise the human role in 

manufacturing activities, the IR5.0 emphasises how technology should be used for the benefit 

of individuals, by focusing on the personalised demands and requirements of customers. 

Sustainability is one of the most significant aspects of IR5.0. Sustainable businesses 

take into account environmental, social, and economic factors to provide a higher standard of 

production, quality, and efficiency. In this regard, sustainable products are the outcome of 

processes that decrease environmental consequences and respect safety and ergonomics 

standards for employee welfare.  

Occupational Health and Safety (OHS), well-being, and satisfaction are necessary to 

industrial sustainability procedures that aim to improve operator safety, physical, and mental 

health. As a result, industrial organisations should view the human element as a valuable 

resource, enhancing working conditions and establishing human-centered production methods. 

Collaborative robots, or cobots, represent a potential and concrete way to increase social 

sustainability without sacrificing production efficiency, allowing enterprises to achieve social 

sustainability while maintaining productivity. The deployment of these technologies opens the 

door to human-robot cooperation, or HRC, which combines the benefits of automation, such as 

accuracy and repeatability, with the flexibility and cognitive soft-skills of humans. 

HRC allows a sophisticated approach to collaborative interaction between humans and 

robots in industrial sectors. It ensures that the machine provides proper support or engagement 

with the operator in stressful, repetitive, and complex operations where the physical and mental 

effort may be increased. HRC's success is owed in part to the groundbreaking use of cobots. 

These innovative robotic arms are more intuitive than their predecessors and allow for closer 

connection with the operator in a fenceless environment. 

The adoption of cobots has altered the human role in real-world manufacturing scenarios 

due to automation technology disruption. As assembly tasks are increasingly monitored by the 

agent for potential system failures, ergonomic assessment is critical for an HRC activity. 

Manufacturing assembly activities are competing to be one of the most intriguing and 

promising applications in collaborative settings, accounting for about half of the typical 

workload in the real manufacturing process. Recent research investigations have developed 

many case scenarios of assembly tasks portrayed in laboratory situations using HRC activities. 

In this regard, ergonomics considerations are of crucial importance for designing these 

collaborative activities.  

There are three types of ergonomics: physical, cognitive, and organisational 

ergonomics. Physical and cognitive ergonomics are critical components of effective and 

efficient human resource management. Physical ergonomics is concerned with human physical 

activity, namely its limitations and capabilities. Cognitive ergonomics studies how humans' 

mental processes are influenced by other systems in their surroundings..  
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With the disruption of sensors applied in HRC environments, psychophysiological 

measures can be used to identify and evaluate the human partner’s responses to the interaction 

with the robot.  

Different physiological metrics in HRC applications have been proposed as markers of 

the operator's mental effort. In this sense, Neuroergonomics, as a branch of Neuroscience 

applied to Ergonomics, enables a more accurate estimation of the workload of the operator 

executing a task. Mental workload (MWL) is the amount of mental labour needed to complete 

an activity.  

The analysis of MWL is defined through indirect and direct methods. These last 

methods are possible through unobtrusive and portable devices such as the innovative 

electroencephaloghram (EEG) cap that paves the way to a new methodology of objective 

ergonomic assessment, monitoring, and evaluation of parameters in the field of HRC. EEG 

provides an online, objective, real-time, and quantitative direct measure of the neuronal activity 

to further analysis the mental stress or engagement of the operator while performing tedious, 

repetitive and stressful activities. 

The PhD work sets out a comparative evaluation of three laboratory experimental 

conditions: in the first, the participant assembles a component without the intervention of the 

robot (Standard Scenario); in the second scenario, the participant performs the same activity in 

collaboration with the robot (Collaborative Scenario); in the third scenario, the participant gets 

fully guided task in collaboration with the robot (Collaborative Guided Scenario) through poka-

yoke or lean principles.  

The purpose of this analysis is to demonstrate the different responses of participants in 

terms of mental workload, efficiency, and productivity in the three settings. Furthermore, the 

research used observational measurements to calculate the productivity index in terms of 

accurately assembled components across the three scenarios. EEG sensors are put on the 

applicant to collect quantitative data for comparison analysis and to assess the operator's mental 

workload during the task in the two different scenarios. The quantitative and objective EEG 

study of the mental effort is backed up by observational measurements of the corrected 

components constructed to correlate the mental workload with production rate. Following these 

measurements, a qualitative analysis, using questionnaires, is useful to assess the user 

experience while working with the robot in the collaborative scenario.  

1.2  BASIC HYPHOTHESES 

H1 - The implementation of collaborative robot solutions can reduce the level of mental 

workload (MWL) during work activities. 

H2 - Reducing the level of mental workload improves the efficiency, effectiveness, and 

quality of work activities. 

H3 - It is possible to define mental workload through objective sensorial devices and 

measurement. 

H4 - The use and implementation of collaborative robots has subjective positive impact 

on workers during work activities. 
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1.3 STRUCTURE OF THE WORK 

The second chapter will deal with the analysis of relevant literature that will be used 

in the doctoral dissertation emphasizing the importance of the following areas: (1) the 

advantages of Human-Robot Collaboration (HRC) tasks in manufacturing activities (2) Design 

and optimization of HRC in laboratory activities (3) The effect of mental workload of operators 

in a HRC activity. The literature analysis will follow the outline content of the dissertation. 

In the third chapter, the research methodology is explained. 

The tests were carried out in a modular industrial assembly workstation built for 

neuroergonomic research and located at the Faculty of Engineering laboratory at the University 

of Kragujevac in Serbia, in collaboration with the Mbraintrain firm in Belgrade. 

The assessment included successive manual assembly activities. Three case studies 

were prepared up for the experiments: in the first scenario, the participant achieved the work 

without any interference in the assembly area; in the second scenario, the robot simply takes 

the components sequentially to the assembly and provides them to the operator; and in the third 

scenario robot carries sequentially the components completely prepared to the assembly 

providing them to the operator. The goal was to conduct a comparative analysis of the mental 

workload by the EEG real-time acquisition in these three different scenarios. The three 

experimental scenarios were set in different periods of the year with a time span of minimum 4 

months each to reduce the error-bias in the comparative neuroergonomic analysis. Moreover, 

to reduce the noise due to internal factors that might influence the workload, experiments started 

in the morning hours of the day, conducted in an isolated environment and at room temperature. 

The fourth chapter describes the design of EEG neuroergonomic assessment in a HRC 

task in the modular assembly workstation. The proposed architecture allowed the collaborative 

robot to be implemented at the workstation without interfering with other systems, as well as 

conducting an EEG evaluation during the laboratory assembly activities. The purpose of 

analysing EEG data is to assess mental workload. The mental workload parameter, defined as 

the power ratio between Beta Waves (stress/engagement index) and Alpha Waves (relaxation 

index), provides for the evaluation of the participants' mental effort in three scenarios. 

In the fifth chapter, the analyses of subjective and observational measurements are 

presented. NASA TLX is an established multidimensional subjective questionnaire that 

assesses the cognitive effort of participants completing a task. For this study, it is used to 

correlate the objective analysis from the EEG neuroergonomic assessment in order to further 

analyse mental workload. A combination of objective and subjective metrics is required to 

assess the cognitive response of the operator doing the task in the three circumstances. 

Furthermore, observational measures using a checklist are used to analyse the level of 

efficiency, effectiveness, and quality of the tasks in the three situations. 

In the sixth chapter, the analysis of the research results is discussed. The scientific 

approach is considered, describing how the mental workload of the operator is affected by the 

cobot activity and how this parameter, from the EEG objective and NASA TLX subjective 

analyses, is correlated with the productivity and efficiency index of the task from the 

observational measurements. 

In the seventh chapter, the conclusions from the conducted research are presented. 

Also, the limitations of the proposed model and future research are analyzed. 

In the eight chapter, the references used in the dissertation are given. 
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1.4 DESIGN OF EXPERIMENTS 

In this dissertation, laboratory experiments were conducted for a comparative study of 

the Mental Workload (MWL) of participants performing manufacturing assembly tasks. 

The laboratory trials were carried out at a modular industrial assembly workstation set 

up at the Faculty of Engineering, University of Kragujevac, Serbia. The workstation was 

equipped with: 

• an industrial computer to monitor and control the performance of various tasks and 

process visualization. 

• a touchscreen PC for task definition and stimulus application. 

• lighting LED technology to adjust the light and make soft shadows to put less strain 

on the eyes of the test participants.. 

• an audio 5.0 system to simulate the sounds of the industrial environment. 

• an adjustable ergonomic work-chair to let the participant seat during the tests. 

To conduct the experiment, the participants put together a prototype model of an 

industrial product. The designed task is similar to the wire harnessing tasks performed in 

manufacturing environments. This activity, similar to wire harness assembly tasks, was chosen 

since there are not enough research studies involving the neuroergonomic analysis of these 

activities with the involvement of collaborative technologies, such as cobots. 

The MWL investigation was carried out using real-time EEG recording and analysis. 

The data were acquired by means of an innovative technology such as the EEG cap, which 

allows for the unobtrusive acquisition of data from the outer region of the participant's scalp 

during the task via Bluetooth. 

The comparative analysis was set up in three scenarios: in the first, the participant 

performs the assembly task of the component without the intervention of the robot (Standard 

Scenario); in the second scenario, the participant performs the task in collaboration with the 

robot (Collaborative Scenario); in the third scenario, the participant gets fully guided task in 

collaboration with the robot (Collaborative Guided Scenario). 

The data were pre-processed through different steps like the Indipendent Component 

Analysis in order to reduce the noise and artifacts. 

The MWL was extracted from a function correlating the most intensive waves from the 

scalp during the analysis.  

Finally, the analysis was correlated with questionnaires and observational 

measurements to evaluate the efficiency of the task performed by the participant in the three 

different scenarios and the evaluation of the cobot’s impact on the workers. 

 

1.5 EXPECTED RESULTS 

For the comparative analysis, the participants accomplished three different types of 

experiments, which include standard scenario, in which the participant performed the task 

without any intervention and support; collaborative scenario, in which the participant 

performed the task interacting with the robot (supporting activity) in the workplace; 
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collaborative guided scenario, where the participants performed the task in collaboration with 

the robot and guided by Poka-Yoke aspects taken into account. 

The realization of the set goals within this doctoral dissertation is expected to develop 

a method to design HRC activities through the real-time acquisition of EEG data. In this sense, 

the following results are expected, which represent the contribution of this work: 

• Efficient Real-time acquisition of physiological data such as EEG. 

• Development of an extended stage Best-Worst model for determining the relative 

importance of RFs' impact on each denoted KPI 

• Analysis of cognitive workload of the operator while performing assembly tasks in 

HRC scenarios. 

• Evaluation of productivity in a HRC activity. 

• Lower level of mental workload in the collaborative scenarios. 
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2. LITERATURE REVIEW 

2.1. INDUSTRY 5.0 OVERVIEW  

Several significant changes in production, technology, and society took place between 

the 18th and the present day in the methods of production, technology, and society have been 

referred to as the Industrial Revolution X.0 (IRX.0), Figure 2.1. These industrial revolutions 

have had a profound impact on economies, societies, and daily life, which has led to significant 

changes in labour practices, urbanization, global trade, and technology developments. In each 

phase, change has taken place and reshaped the world as we know it now. 

 

Figure 2.1 – Industrial Revolution Phases  

The First Industrial Revolution, or IR1.0, (1760-1840) shifted the economy from the 

agrarian to the industrial one. The deployment of steam power, advancements in iron and steel 

production, and the introduction of railways were key elements during this time (Mokyr, 2010). 

In the Second Industrial Revolution, or IR2.0, (1870-1914) more significant technological 

advancements raised including the proliferation of steel production, the introduction of the 

telegraph and telephone, widespread use of electricity, the internal combustion engine, and the 

rise of mass production techniques pioneered by figures like Henry Ford. This period saw rapid 

industrial growth, urbanization, and the emergence of large corporations and industrial empires 

(Mokyr and Strotz, 2000). The IR3.0 (1950 - beginning of 2000s), also named Digital 

Revolution, was characterized by the rise of electronics, telecommunications, computers, and 

the internet. It introduced automation and digital technologies, transforming the way industries 

operate, communicate, and produce goods (Teixeira et al., 2019). The IR4.0 (beginning of 

2000s – 2020) involved the integration of artificial intelligence (AI), machine learning (ML), 

robotics, nanotechnology, biotechnology, and the internet of things (IoT) to the digital 

development of the last industrial revolution. Industry 4.0 introduced a new level of 

interconnectivity, data-driven decision-making, and the integration of cyber-physical systems 

(Heat, 2016). 

The late Industrial Revolution 5.0 (2020-ongoing), or IR5.0, has been considered a 

successor or complement to the IR4.0. While IR4.0 highlighted the high level of 

interconnectedness that crossed the barriers between the physical, digital, and biological 

spheres, IR5.0 is recommended to emphasise human collaboration and engagement with 

modern technologies. The European Commission defined the idea of IR5.0 to reflect the need 

to integrate European priorities in the context of social and environmental concerns, as well as 

to encourage businesses and industries to evolve and become more sustainable, resilient, and 

human-centred. (Javaid and Haleem, 2020; Tiwari et al., 2022). 
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Furthermore, the recent Covid-19 global pandemic underlined the limitations of 

traditional working methods and approaches. It has worsened our sectors' weaknesses, such as 

fragile key value chains, and highlighted the necessity of flexible yet durable solutions to these 

vulnerabilities. Nevertheless, the pandemic has accelerated the deployment of digital 

technologies and automation across businesses. With lockdowns and limitations affecting 

traditional workplaces, businesses have increasingly turned to remote labour, automation, and 

digital solutions to assure business continuity. Thus, the increasing use of technology to sustain 

operations may have contributed to the advent of IR5.0, emphasising human-machine 

collaboration (Stovicek, 2023). 

According to Ivanov (2022), unlike the other four industrial revolutions, which 

concentrated on automating processes, IR5.0 attempts to use modern technology to suit 

customer’s demand highlighting their personalised expectations and requirements. To 

accomplish this, Demir and colleagues (2019) proposed that humans collaborate with robotic 

machines in all feasible scenarios and contexts, resulting in the widespread integration of robots 

into organisations. Despite some writers' criticism that the IR5.0 has not yet begun (Mourtzis 

et al., 2022), both IR4.0 and, more importantly, I5.0 stress human-robot collaboration (HRC) 

as a critical feature for the well-being and pleasure of industrial operators. (Nahavandi, 2019).  

Many enabling technologies from IR4.0 are expected to be leveraged to help fulfil the 

societal goals of IR5.0. However, some IR5.0 technologies, such as bio-sensor technologies 

and the ones for energy efficiency, storage, and renewable energy, deserve special attention. 

(Gladysz et al., 2023).  

However, IR4.0 addresses the challenges of human-centricity, sustainable development, 

and adaptability with an emphasis on outcomes and a defined technology strategy. Unlike 

IR4.0, IR5.0 highlights a significant transition from individual technologies to a systematic 

approach. This method enables the sector to fulfil societal goals other than jobs and growth, 

and it prioritises the well-being of industrial workers throughout the production process. This 

may assist to explain why IR5.0 is regarded as distinct from previous Industrial Revolutions 

(Alves et al., 2023).  

 IR5.0 is neither a historical continuation of nor an alternative to the IR4.0 paradigm. 

IR5.0 is the product of a forward-thinking exercise that envisions how industry and developing 

society trends and requirements will coexist. As a result, Industry 5.0 enhances and expands on 

the key elements of IR4.0. This may help distinguish IR5.0 as a distinct type of Industrial 

Revolution from the others, while accepting that the other Industrial Revolutions are a 

chronological continuation of their predecessors (Raja Santhi and Muthuswamy, 2023).   

According to the prediction of Brunetti and colleagues (2022), IR5.0 will be the period 

of the socially smart factory, or "Social Smart Industry", in which social business networks 

converge with people for seamless communication, specifically, cyber-physical production 

systems that are synergistically coupled with the human component (Wang et al., 2022). 

Furthermore, IR5.0 is a human-centered approach in which humans and technologies operate 

in tandem. Machines performes labor-intensive or repetitive jobs, while people will handle 

personalisation and critical thinking (Pizon and Gala, 2023). 

Thus, the key concepts of IR5.0 revolve around the concept of "human-centric" design 

manufacturing, which entails integrating and syncing the capabilities of both humans and 

machines in order to create more harmonious and cooperative working environments in which 

humans and robots can collaborate more effectively. Safety, ergonomics and human factors, 

and efficiency are the pillars for a collaborative automation, as shown in Figure 2.2. 
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Figure 2.2 – Key pillars of Industry 5.0  

In this perspective, sustainability is one of the most important features of IR5.0. 

Sustainable businesses take into account environmental, social, and economic factors to provide 

a greater level of production, quality, and firm efficiency. Sustainable products are the result of 

methods that limit environmental consequences while also respecting safety and ergonomics 

guidelines for employee well-being (Nielsen and Brix, 2023).  

Nonetheless, OHS, well-being, and satisfaction are pivotal to these procedures aiming 

to improve operator safety and wellbeing. Hence, industrial organisations should view the 

human role as a valuable resource, enhancing working conditions and establishing human-

centered production methods (Avila-Gutierrez et al., 2022). 

2.2  LEAN MANUFACTURING 

 Lean manufacturing, noted for its attention on waste reduction and efficiency, has 

played an important role in the advance of industrial practices, particularly the recent shift to 

IR5.0 (Nikolic et al., 2023). Lean production, also known as lean manufacturing, consists of a 

series of strategical methods for reducing waste within a system (manufacturing environment) 

while maintaining productivity. It is based on the Toyota Production System and aims to 

preserve value with less work (Hawee and Al-Tai, 2024). Here are its main characteristics: 

 Waste Elimination (Muda): Lean production aims to detect and eliminate non-value-

adding activities. This can include overproduction, long wait times, wasteful 

transportation, excess inventory, excess motion, faults, and over-processing. 

 Continuous Improvement (Kaizen): Lean production aims to make incremental changes 

to pursuit higher levels of quality, productivity, and efficiency. 

 Just-In-Time Production (JIT): it aims to create and deliver products in the exact 

quantity and time required. This decreases both inventory and storage costs. 

 Flexibility: Lean systems are designed to be adaptable and flexible, allowing them to 

adjust swiftly to changes in customer demand while avoiding extra inventory and time 

delays. 
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 Quality management: it emphasises defect prevention over detection, as a target of 

obtaining zero defects through continual improvement. 

 Employee Involvement: employees are encouraged to be actively involved in the 

process of identifying inefficiencies and suggesting improvements. 

 Value Stream Mapping: this is a process for assessing the current state and developing 

a future state for a product's life cycle, from conception to customer. 

By implementing these principles, lean production aims to create a more efficient, 

effective, and agile production process that can boost productivity, reduce costs, and improve 

quality. In this regard, Poka-yoke (or P-Y) is a Japanese phrase that essentially means "mistake-

proofing" or "error prevention." It is a concept used in lean manufacturing and quality 

management to create processes or mechanisms that reduce human error (Lv et al., 2023). Key 

aspects of P-Y include: 

 Error Prevention: designing processes or equipment in a way that makes it impossible 

or extremely difficult to make mistakes. For example, using shapes that only fit together 

one way (like USB plugs) so that incorrect assembly is impossible. 

 Error Detection: incorporating systems detecting errors when they happen. This can 

include sensors or alarms that activate when something is done incorrectly, allowing for 

immediate corrective action. 

 Simplicity and Intuitiveness: the solutions should be simple and intuitive, often 

employing visual cues or easy-to-understand mechanisms that guide the user to perform 

tasks correctly. 

 Reduced Rework and Waste: by preventing errors, P-Y helps reduce the need for rework 

or correction, thus minimizing waste and improving efficiency. 

 Improved Safety and Quality: The system enhances safety for workers by reducing the 

chance of accidents and ensures higher quality products by preventing defects. 

 Employee Control: workers are part of the creation and implementation of P-Y 

solutions, which empowers them and enhances their role in quality control. 

 

Poka-yoke is a key component of the lean manufacturing concept, and it is widely 

utilised in a variety of industries to improve product quality, safety, and productivity. 

2.2.1 Metrics deployed in Lean Manufacturing 

Efficiency, quality, and productivity are fundamental metrics in lean manufacturing, 

each playing a crucial role in determining the success and competitiveness of a manufacturing 

process. Understanding and effectively measuring these metrics is key to implementing lean 

principles and achieving continuous improvement. 

Efficiency in lean manufacturing refers to the amount to which time, effort, and 

resources are employed effectively for the intended task or goal. It is about doing things in the 

most cost-effective way feasible. Efficiency is commonly quantified by comparing actual 

production to maximum achievable output, or operational efficiency. Another metric for 

efficiency is Overall Equipment Effectiveness (OEE), which takes into account the equipment's 

availability, performance, and quality (Aucasime-Gonzales et al., 2020). 

Quality can be determined in a variety of methods, including First Pass Yield (FPY), 

which determines how many goods are manufactured correctly without rework. Other variables 

include the quantity of faults per unit, the frequency of returns or complaints, and audit 

outcomes (Corona et al., 2021). 
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Productivity in lean manufacturing is about maximizing output with the minimum 

amount of input. It's a assesses how well production inputs, such as labor and materials, are 

being turned into outputs. Productivity is often measured as the ratio of output to input. For 

instance, labor productivity can be calculated by dividing the total output by the total number 

of labor hours invested in the production (Milosevic et al., 2021). 

Each of these metrics are interrelated and critical for lean manufacturing (Kumar et al., 

2021). 

While both deal with the link between inputs and outputs, efficiency is primarily 

concerned with process quality (doing things correctly), whereas productivity is concerned with 

output quantity (doing more with less). Quality and productivity are frequently viewed as trade-

offs. Lean manufacturing, viceversa, seeks to enhance both simultaneously. High quality saves 

rework and waste, resulting in increased production. In terms of quality and efficiency, high-

quality operations are typically more efficient. They reduce waste and rework, two essential 

aspects of lean production. Efficient processes aim to create consistent, high-quality results. In 

a lean manufacturing context, these metrics are more than simply individual signs; they are part 

of a comprehensive strategy to continuous improvement. The goal is to optimise all three areas 

to establish a balanced, efficient, and lean manufacturing system. 

Effectiveness is another critical indicator in lean manufacturing that is different yet 

closely related to efficiency, quality, and productivity. Understanding the role and measurement 

of efficacy is pivotal for fully analysing and improving manufacturing processes. In the 

manufacturing setting, effectiveness relates to how successful something is at generating the 

desired output. It is about doing the proper things to accomplish the desired aims or goals 

(Kulakov et al., 2023).  

While efficiency focuses on how well resources are used, effectiveness is primarily 

concerned with the outcome or output's alignment with the desired goals. For instance, a process 

may be efficient (using fewer resources) but ineffective if it fails to accomplish the desired 

result. A process might be successful but inefficient if it uses more resources than are required 

to produce the desired output. 

Different measurements might be applied to measure the effectiveness of industrial 

processes, considering specific aims and objectives involved. Customer happiness, market 

share, product quality, and the success of specific strategic goals such as new market penetration 

or product development are all common measures. Customer Satisfaction assesses the quality 

of a product that fulfils or exceeds the customer's expectations. While goal achievement entails 

establishing explicit, quantifiable objectives (such as production targets or quality benchmarks) 

and evaluating how efficiently they are reached. 

In lean manufacturing, effectiveness is critical to ensuring that waste reduction, 

efficiency, and productivity improvements are aligned with the organization's overall goals. 

Not only is it saving resources or speeding up production, but it is also ensuring that these 

efficiencies help produce the appropriate product, at the right time, and in the correct quality to 

meet consumer demands (Vukadinovic et al., 2019). 

Lean Manufacturing aimes to achieve a balance of efficiency, effectiveness, and quality. 

It entails developing procedures that not only maximise resource utilisation (efficiency) and 

provide a high output (productivity), but also guarantee that the output satisfies the required 

objectives in terms of customer satisfaction and strategic goals. 
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In summary, while efficiency and productivity concentrate on the "how" of operations 

(how resources are used, how much is generated), effectiveness is concerned with the "what" 

(what is accomplished, what the outcomes are). An effective lean manufacturing process not 

only reduces waste and increases output, but it also guarantees that the output meets customer’s 

expectations (Nounou, 2018). 

2.2.2 Measurement of the Lean Manufacturing Parameters 

This section shows general metrics used in Lean Manufacturing. These metrics are 

crucial for ensuring that lean principles are effectively implemented and maintained.  

 

 Cycle Time: this measures the total time taken to complete one cycle of a process. It's 

essential for identifying bottlenecks and understanding how long it takes to produce a 

single item (Pinheiro et al., 2023). 

 Lead Time: it is the total time from the initiation of a process (like an order) to its 

completion. The reduction of lead time is one of the crucial goals in lean practices, as it 

increases the system's responsiveness to customer demand (Rekha et al., 2017). 

 Takt Time: it is the rate at which products need to be produced to meet customer 

demand. It is calculated as the ratio of the available production time over the number of 

products suiting the customer needs. (Soliman, 2017). 

 Overall Equipment Effectiveness (OEE): OEE is a comprehensive metric that measures 

the efficiency of a manufacturing process by considering capacity, performance, and 

quality. It contributes to recognising losses, benchmarking progress, and increasing the 

productivity of equipment and processes. (Shmatkov and Shmatkova, 2021). 

 First Pass Yield (FPY): FPY measures the percentage of outputs that are correctly 

manufactured according to the specifications the first time without requiring rework. 

High FPY indicates effective manufacturing processes and quality control (Mehta, 

2009). 

 Value Stream Mapping: while not a metric in the traditional sense, value stream 

mapping is a lean tool used to visualize and analyze the flow of materials and 

information through a production process. It contributes to identifying waste and 

opportunities for improvement (Lian and Landeghem, 2002). 

 Inventory Turnover: this metric measures how many times a company's inventory is 

sold and replaced over a period. High inventory turnover indicates efficient use of 

inventory, whereas low turnover might suggest overproduction or inefficiencies 

(Soliman, 2017). 

 Work In Process (WIP): WIP refers to the materials and components that are currently 

being processed. WIP helps ensure production is smooth and inventory levels are not 

excessive (Corona et al., 2021). 

 8 Wastes/DOWNTIME: it is a checklist of eight types of waste to be eliminated in lean 

manufacturing: defects, overproduction, waiting, non-utilized talent, transportation, 

inventory excess, motion waste, and excess processing (Corona et al., 2021). 
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 5S Score: 5S is a workplace organization method (sort, set in order, shine, standardize, 

sustain). The 5S score assesses how well these practices are being implemented (Amrina 

and Lubis, 2017). 

 

These metrics help in tracking efficiency, identifying non-value-adding activities, and 

guiding continuous improvement initiatives by applying lean practices. By regularly 

monitoring and acting on these metrics, organizations can maintain a lean, efficient, and 

customer-focused production system. 

2.2.3 Key Performance Indicators (KPIs) 

 Key Performance Indicators (KPIs) are quantifiable measures used to evaluate the 

success of an organization, employee, team, or process in achieving key objectives and goals. 

KPIs are critical in business and project management, as they highlight a clear way to track 

progress and performance (Parmenter, 2015).  

KPIs in Lean Manufacturing frequently focus on indicators such as production time, 

waste reduction, quality rates, and customer satisfaction. KPIs are increasingly evolving to 

encompass measurements other than efficiency and productivity, like innovation, sustainability, 

customer personalisation, and the effectiveness of human-machine collaboration. The KPIs 

would set a trade-off between technological performance and human-centric ideals. Indeed, as 

IR5.0 reintroduces the human role into manufacturing, emphasising creativity, decision-

making, and craftsmanship while complementing automated processes, IR5.0 KPIs would 

measure how effectively human skills are integrated into production processes, influencing 

product quality and innovation (Sangwa and Sangwan, 2018). 

Furthermore, both Lean Manufacturing and IR5.0 emphasize sustainable practices. 

KPIs would therefore include metrics related to environmental impact, resource efficiency, and 

sustainable practices. KPIs are pivotal tools in performance management, as they help 

organizations focus on areas of importance, aligning resources and efforts towards strategic 

goals. 

Below, it is presented some general key aspects of KPIs: 

 Specificity: KPIs are specific to the organization’s goals and are deployed to 

assess performance that is essential to the success of the organization. They 

should align with strategic objectives. 

 Measurable: KPIs must be quantifiable. This allows for clear tracking and 

assessment of whether goals are being met. Examples include sales revenue, 

profit margin, customer expectation scores, and turnover. 

 Actionable: Effective KPIs can inform decision-making and guide actions to 

enhance performance. 

 Relevant: KPIs should be relevant to the specific goals of the organization.  

 Time-Bound: KPIs are set with a specific time frame, for instance, monthly, 

quarterly, or annually. This helps track progress over time. 

KPIs vary depending on the organization, the specific business, its goals, and its 

strategic focus (Contini and Peruzzini, 2022). 
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KPIs serve as critical metrics to gauge the success and alignment of Lean Manufacturing 

principles with the evolving landscape of IR5.0, ensuring that the collaboration between 

technology and humans in production processes is both efficient and aligned with broader 

organizational goals like sustainability, innovation, and customer needs. IR5.0’s focus on 

customization and flexibility aligns with Lean Manufacturing' s emphasis on meeting specific 

customer needs. So, KPIs would therefore track the efficiency and adaptability of production 

systems when demands changes and thus, coming up with customized solutions (Chalak et al., 

2022). 

KPIs are variables used to report on progress towards targets. Furthermore, indicators 

should be relevant with the company's vision, goals, and plans. KPI assessment is an essential 

component of Performance Management in successful businesses. However, it is not always 

clear which KPIs should be utilised and whether they can effectively measure the performance 

of systems (Stefanovic et al., 2017). 

A systematic distinction of KPIs in manufacturing contexts is offered on the base of the 

relevance of resources regarding the whole business. According to Brown (2005), in a 

manufacturing environment, KPIs are grouped into three management segments: production 

management, procurement management, and sales management. Nonetheless, other KPIs were 

pointed out by Nestic and colleagues (2019) regarding the performance assessment of small-

medium enterprises (SMS). 

KPIs provide managers the necessary information to identify opportunities for 

improvement and encourage them to strive for higher performance (Rajkovic et al., 2020). An 

overview of indicators that are related to the workers’ performance is offered by Bauters and 

colleagues in their research work  (2018). 

2.3 HUMAN ROBOT COLLABORATION (HRC) 

2.3.1 General Overview 

HRC is a working relationship between humans and robots performing activities 

together in a shared space. This notion represents a substantial departure from traditional 

robotics, in which robots frequently work independently of humans due to safety concerns. 

HRC combines the advantages of humans and robots to iimprove efficiency, flexibility, and 

productivity (Segura et al., 2021). 

The ultimate goal of HRC is to develop a synergistic collaboration in which people and 

robots can collaborate more effectively than they could individually. This relationship has 

significant promise in a large scale of domains, including manufacturing, healthcare, service 

industries, and research. HRC can boost productivity, innovation, and worker safety by 

exploiting the particular qualities of human intelligence as well as robotic precision. 

In HRC, robots and humans complement each other's abilities. Robots handle repetitive, 

high-precision, or heavy tasks, while humans manage tasks requiring judgment, fine motor 

skills, or adaptability. Furthermore, Safety is the most important component of human resource 

management. Collaborative robots (cobots) are built with force sensors, soft materials, and 

rounded edges to work securely alongside humans. These robots are frequently outfitted with 

advanced sensors that sense human presence and change their behaviour accordingly. This is 

the reason why in some HRC setups, robots assist humans by reducing ergonomic strain. For 

instance, a robot might handle heavy lifting or maintain tools in an optimal position, thereby 

decreasing the physical burden on the human worker (Gualtieri et al., 2020). 
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HRC involves effective communication. This could include interfaces that make it easy 

for people to programme and direct robots to allow robots to communicate their intents to 

human coworkers. Unlike traditional robotic setups, HRC often occurs in flexible and adaptive 

environments. Robots in these settings can quickly be customized to new activities in the 

workspace (Hjort and Chrysostomou, 2022). 

2.3.2 The Origins of Robots 

The first examples of robots, which are mechanical devices designed to mimic human 

or animal actions, were found back to ancient civilizations. For example, in ancient Greece, 

myths and traditions concerning mechanical beings created by the gods existed (Fron and Korn, 

2019). Historically, the Greek scientist Hero of Alexandria (10-70 AD) invented mechanical 

devices that can be considered early examples of automated machinery. Automata regained 

popularity throughout the Renaissance period. Around 1495, Leonardo da Vinci created 

sketches of a robot with human traits (Iavazzo et al., 2014). This era witnessed the development 

of many mechanical gadgets intended to entertain or fulfil useful functions, like the concept of 

robots. In the Modern Era, Figure 2.3, Machines started taking over tasks that were previously 

done manually, especially in manufacturing (Gasparetto, 2016). The word "robot" was first 

used in its modern sense in 1921 by the Czech writer Karel Čapek in his play "Rossum's 

Universal Robots" (“R.U.R.”). Specifically, the word 'robot' comes from the Czech word 

'robota,' which means forced labour or drudgery. In this play, robots were imagined as 

artificially created beings that eventually rebel against their human creators (Bay-Cheng, 2015). 

 

Figure 2.3 – Map of the robot’s evolution in the Modern Era (Villani et al., 2022) 

Always from the field of Arts, the so-called Rules of Robotics were proposed by Isaac 

Asimov, a science fiction author known for his extensive work on robotics and artificial 

intelligence. Asimov first introduced these laws in his 1942 short story “Runaround” and they 

have become a central theme in discussions about the ethics and design of artificial intelligence 

and robotics. The rules are (Asimov, 1950): 

1. A robot may not injure a human being or, through inaction, allow a human being 

to come to harm. 

This rule prioritizes human safety above all other directives for a robot. 
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2. A robot must obey the orders given it by human beings except where such orders 

would conflict with the First Law. 

This rule establishes the subservience of robots to human commands unless those 

commands result in harm to humans. 

3. A robot must protect its own existence if such protection does not conflict with 

the First or Second Law. 

This rule allows a robot to defend itself and ensure its operational longevity, but not at 

the expense of human safety or disobeying human commands. 

Later, Asimov added a fourth, or "Zeroth" rule, which precedes the original three: 

4. A robot may not harm humanity, or, by inaction, allow humanity to come to 

harm. 

This law extends the First Law's protection of individual humans to include humanity 

as a whole, taking into account the greater impact of a robot's actions on human civilization. 

Then, the first true electronic robots were introduced in the 1940s and 1950s. These 

were simple machines capable of performing automated tasks. A significant development was 

the creation of Unimate, the first robot deployed in industrial settings, which started work in a 

General Motors factory in 1961 (Gasparetto and Scalera, 2018).  

These principles were more than just narrative devices in Asimov's fiction: they were a 

genuine proposal for how autonomous robots should be managed to guarantee their safety and 

benefit to humans. As of my latest update, they were neither legally enforceable nor technically 

implemented in real-world robotics. However, they continue to impact discussions about the 

ethical design and usage of AI and robots. 

In IR5.0, the combination of human intelligence, adaptability, and problem-solving 

abilities, as well as robot precision, strength, and endurance, serves as the foundation for 

efficient and innovative production processes. The aim is to design a harmonic connection 

between humans and machines to maximise productivity, safety, and overall effectiveness in 

industrial settings. 

2.3.3 The Rise of Collaborative Robots (Cobots) 

HRC has become of paramount importance in IR5.0 aiming to human-centered 

manufacturing and production. Its achievement has made possible through cobots. A cobot is, 

by definition, a “robot designed for direct potential interaction with humans within a defined 

collaborative workspace”. This kind of robot is being adopted at unprecedented rates in 

organizations and it is expected to become the central tool of manufacturing globally, due to its 

specific characteristics, such as safe interaction with humans (Duarte et al., 2022). 

Colgate and colleagues, academics at Northwestern University, were the first to suggest 

the notion and the word "cobot" coming up with the concept of a cobot in the 90s. The goal was 

to design robots that could physically interact with humans in a shared workspace. This was a 

considerable shift from typical robotic systems, which were intended to operate autonomously 

and frequently required safety barriers to protect human workers (Colgate et al., 1996). 

Cobots were first designed without autonomous actuation for task performance. Instead, 

they were designed to direct and support human movement, making it more efficient, safe, and 
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precise. The assistance was provided by techniques such as power steering, in which the cobot 

sensed the direction in which a human worker desired to move an object and assisted with the 

movement, lessening the physical strain on the human worker. 

Cobots' definitions and capabilities have expanded over time. Modern cobots are more 

complex, able to conduct a wide range of activities autonomously or semi-autonomously while 

ensuring human coworker safety and seamless interactions. They are equipped with safety 

sensors, advanced control systems to detect collisions allowing them to recognise and act to 

human presence and activities, making them ideal for collaborative tasks in industries such as 

manufacturing, healthcare, and services. The introduction of cobots reflects a broader shift in 

the field towards more interactive, flexible, and adaptable systems. This approach aligns with 

the principles of IR4.0 and IR5.0, which emphasize automation, data exchange, and human-

machine collaboration in industrial settings (Liu et al., 2022; Sahan et al., 2023). 

The deployment of cobots in manufacturing environments has allowed to increase 

productivity in industrial production processes (Wang et al., 2017; Picco et al., 2023). Several 

measures can be applied for evaluating a manufacturing system's productivity, including the 

number of units produced every period, the number of resources consumed for a given output, 

the number of defective products produced, and so on (Michalos et al., 2018; Caiazzo et al., 

2023). Productivity is increased by combining the good qualities of robots such as high 

precision and repeatability, handling heavy loads and operate without performance 

deterioration even in difficult or dangerous environments with the human’s ability of problem 

solving, awareness and manual dexterity in complex or sensitive tasks (Arai et al., 2010). This 

brought to a shift from the traditional manual assembly tasks, as shown in Figure 2.4 (Bensch 

et al., 2017) 

Thus, the transition from a manual to a human-robot collaborative activity may provide 

a decrease in takt time because cobots do some activities and typically complete them faster 

than humans, increasing productivity. Furthermore, cobots, with their precision and 

reproducibility, can reduce the ratio of defective items caused by human mistake (Caiazzo et 

al., 2023b).  

 

Figure 2.4 – The benefits of a hybrid (collaborative) scenario 
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Figure 2.5 – Overview of HRC applications and the connection between the grade of 

interaction and productivity index level (Vicentini, 2017) 

The Figure 2.5 describes the potential applications of cobots in different tasks. Cobots 

are commonly employed in manufacturing to perform tasks such as part assembly, machine 

tending, packaging, and quality inspection. They can handle repetitive jobs while humans 

concentrate on more complicated parts of the assembling process. As technology progresses, 

the range of applications for cobots expands, creating new room for HRC across industries 

(Colim et al., 2021).  

EU has made a substantial contribution to the effort in this field by recognising cobots as a 

technology with the potential to positively impact the economy and society. (Nielsen and Brix, 

2023).  

Industries are enthusiastic about cobots and automation. They can see the substantial 

benefits that robots may provide, like higher productivity and job happiness. A study found that 

robots produce more jobs. Following the report of Word Robotics (2023), companies that 

implemented robots had an overall boost in recruiting and production. In contrast, those 

companies that avoided automation lost productivity and were more likely to lay off workers 

(Maddikunta et al., 2021). 

HRC has allowed a more agile manufacturing processes that can quickly adapt to 

changes in product design, production volumes, or customizations, without requiring significant 

reprogramming or reconfiguration. Thus, cobots can contribute to cost savings by improving 

efficiency, reducing errors, and optimizing processes. While the initial investment in robotics 

may be significant, the long-term benefits in terms of increased productivity and reduced 

operational costs can be substantial (Picco et al., 2021; Adel, 2022). 

Cobots can handle physically demanding or hazardous tasks, freeing humans from such 

labour-intensive activities. This shift can lead to a better work environment, reducing worker 

fatigue, stress, and exposure to potentially dangerous conditions (Alojaiman, 2023). 
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2.3.4 Mechanical Design of Cobots 

First, the mechanical design of cobots must focus on safety, efficiency, and flexibility 

of the machine while working with humans. An overview of their mechanical design aspects is 

offered below (Villani et al., 2018; Rodriguez-Guerra et al., 2021; Patil et al., 2023): 

 Lightweight Structure: cobots are designed with lightweight materials like 

aluminium and advanced composites to reduce inertia and make them safer for 

human interaction.  

 Reduced Moving Parts: unlike conventional industrial robots, cobots often have 

fewer moving parts, reducing maintenance needs and increasing reliability. 

 Joint Flexibility: cobots typically feature multiple joints that mimic human arm 

movement, allowing for greater flexibility and range of motion. These joints are 

often powered by servo motors with advanced control systems for smooth 

operation. 

 Force and Torque Sensors: to guarantee safe operations, cobots are equipped 

with force and torque sensors in their joints and end effectors. These sensors 

allow the cobot to detect unexpected collisions and respond appropriately by 

stopping or altering their path. 

 Soft and Rounded Surfaces: the mechanical design often includes soft and 

rounded surfaces to minimize injury risk in case of accidental contact with 

humans. 

 End-of-Arm Tooling (EOAT): the EOAT system must be designed to be easily 

interchangeable and often includes grippers, screwdrivers, or other tools. This 

flexibility allows cobots to perform a different task. 

 Integrated Cable Routing: to avoid the risk of entanglement and improve safety, 

cobots often have cables and hoses integrated within their body, maintaining a 

clean and uncluttered design. 

 Safety-Compliant Materials: materials used in cobots are chosen not only for 

their strength and durability but also for compliance with safety standards, which 

might include being non-toxic and shatter-resistant. 

 Advanced Gripping Mechanisms: the gripping mechanisms are conceived to be 

versatile and sensitive, allowing cobots to handle different objects with different 

shapes. 
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Figure 2.6 – Overview of the Mechanical Design of Cobots 

The Figure 2.6. also shows a summary of the main mechanical components and aspects to 

consider in the design of cobots. 

2.3.5 Degrees of Freedom (DOFs) of Cobots 

DoFs in cobots indicate the number of independent movements or axes of motion they 

have. Each degree of freedom corresponds to a joint in the robot, which allows it to move in a 

specific manner. The number of degrees of freedom influences the robot's flexibility and 

versatility while doing complex tasks. Here are some popular setups for degrees of freedom in 

cobots. 

With 4 DOFs, cobots have four independent axes of motion. While somewhat limited 

in their range of motion compared to higher DoF cobots, they are still useful for simple, 

straightforward tasks (Sasane, 2014). 

In 5 DoFs, these cobots can perform more complex tasks. However, they may still have 

limitations in certain orientations or positions (Pisetskiy and Kermani, 2023). 

 The traditional configuration for cobots is 6 DoFs. With six axes of motion, these robots 

can replicate most of the movements of a human arm, allowing them to approach an object from 

virtually any angle. This level of flexibility is suitable for a wide range of applications, 

including assembly, painting, and welding (Fu and Zhang, 2018). 

Finally, in other configurations with 7 DoFs, cobots offer even greater flexibility, 

closely mimicking the range of motion of a human arm. The additional degree of freedom 

allows the robot to manoeuvre in tight or complex spaces more easily. This configuration is 

applied in those applications where positioning and orientation of the tool are critical, and space 

is constrained (Doliwa, 2020).  

Some advanced cobots may have more than 7 DoFs, which can be useful in highly 

specialized applications. However, the increased complexity can make programming and 

control more challenging (Dahmouche et al., 2020). 
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The choice of DoFs for a cobot depends on its intended application. More DoFs allow 

greater flexibility and versatility, but also add to the complexity, cost, and sometimes the size 

of the machine. For many standard industrial and collaborative tasks, 6-DoF cobots are the most 

popular solutions for a balance between flexibility and ease of use (Akkar and A-Amir, 2016). 

2.3.6 Difference between Industrial Traditional Robots and Industrial Cobots 

Traditional industrial robots were designed to do certain jobs and were frequently 

distinguished by great speed, precision, and power. They were often deployed in production 

environments to conduct repeated operations with high precision. These robots were often huge, 

fixed-location machines that operate in fenced-off or restricted areas to protect human workers 

from potential threats. In contrast, cobots are designed to interact and work with people in 

shared workspaces. They are designed to be naturally safe for direct interaction with humans. 

Cobots contain safety features such as force-limiting mechanisms, sensitive skins, and safety-

rated sensors, which enable them to recognise human presence and respond appropriately to 

guarantee a safe collaboration (Sahan et al., 2023). 

In terms of safety, Figure 2.7, traditional industrial robots often operate independently 

from humans or in enclosed environments to avoid unintentional contact that could cause injury. 

Because of their size, speed, and power, they necessitate safety precautions such as physical 

barriers or safety zones to protect workers. Cobots, on the other hand, are meant to function 

safely alongside humans, eliminating the need for physical separation. They have safety 

systems that let them to stop or lessen their speed when they detect human presence or contact, 

facilitating safe collaboration in shared environments. 

 

Figure 2.7. – Robotic workplace differences (EN ISO 10218-2 / ISO/TS 15066) 

In terms of size, conventional industrial robots are often larger, heavier, and have solid 

structures tailored to certain jobs. They lack the agility and versatility needed for close human 

connection. Cobots, on the other hand, are typically smaller, lighter, and constructed with 

rounded edges or softer exteriors to reduce the danger of injury if they come into touch with 

humans. They frequently have user-friendly interfaces, straightforward programming, and 

training methods that allow non-experts to quickly programme or instruct them on a variety of 

tasks. 
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Furthermore, they are designed with user-friendly interfaces to reduce the physical and 

mental strain on human workers performing tasks. Additionally, sensors and software are 

deployed for direct human-robot interaction, allowing robots to interact safely with humans, be 

operated intuitively, and perform jobs without the risk of physical contact or accident. As they 

become increasingly widespread in the manufacturing business, HRC has offered itself as a 

viable approach for firms to increase output and worker safety while relieving them of some of 

their workload. (Villani et al., 2022). 

In summary, the formal scientific distinction between traditional industrial robots and 

cobots regards their design and application for human-robot interaction (HRI). Scientific 

standards and research literature emphasize the development and implementation of safety 

features in cobots to ensure their safe collaboration with humans, see Figure 2.8. 

 

Figure 2.8 – Cobots vs Industrial Robots 

2.3.7 Cobots’ Market Growth 

The presence of cobots in various fields has seen a significant increase in recent years, 

Figure 2.9. Cobot market is experiencing rapid growth. In 2017, the market was valued at less 

than $400 million but grew by more than 60% in 2018 to almost $600 million. It is projected to 

reach around $7.5 billion by 2025. By then, it's estimated that nearly 35% of all industrial robots 

in the market will be cobots (Nikolaev, 2023). 

According to the International Federation of Robotics, there has been a rapid growth of 

the presence of industrial robots worldwide: 
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Figure 2.9 – Estimated annual worldwide supply of industrial robots (Nikolaev, 2023) 

In accordance with the International Federation of Robotics (IFR), cobot technology 

could be useful in two separate situations. It could be employed in SMS enterprises to automate 

certain aspects of the production line while leaving others untouched, resulting in greater 

productivity and quality. It could also help people do assembly duties, which frequently result 

in physical injuries, in organisations that already have automated processes (for example, the 

automobile industry). According to industry data, the professional service robotics sector 

surged by 32% in 2019 (from $8.5 billion to $11.2 billion) (Executive Summary World 

Robotics, 2020), with cobot sales volume outpacing traditional ones (IFR Press Conference, 

2020).  

Furthermore, the pandemic appeared to strengthen the market for robotic components 

used in warehouses, factories, and home deliveries, as well as because the technology fosters 

social separation. 

As shown in Figure 2.10, the increase of traditional robots was estimated from 368.000 

to 478.000 units while the increase of cobots was estimated from 26.000 to 39.000 units. Cobots 

applications represent still nearly the 10% of the conventional industrial robot applications, 

though their rapid rise in industrial applications. 
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Figure 2.10 – Annual Installation Growth of traditional robots and cobots from 2021 

to 2022 (World Robotics, 2022) 

Europe is currently leading the global cobots market, with significant growth expected 

in the automotive sector. As shown in Figure 2.11, the European cobot market is estimated to 

reach USD 5.62 billion by the end of 2024. Meanwhile, the Asia-Pacific region, including 

China, Japan, and India, predict to see the most growth in the coming years as the demand for 

automation expands in these countries (Nielsen and Brix, 2023). 

 

 

 

Figure 2.11 – Estimated number of industrial robots per ‘000 units in the countries 

worldwide (World Robotics, 2022) 
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In summary, the application of cobots in various fields is not only increasing but also 

diversifying. The growth in their market size, technological advancements, and expanding 

regional markets all indicate a significant upward trend in cobot applications across industries.  

2.3.8 Safety in Human-Robot Collaboration 

Collaborative systems enable and demand job sharing in a fenceless workspace where 

the primary danger category is mechanical. The presence of both humans and robots in a shared 

workspace may result in non-functional physical interaction between the operator and the 

machine's mobile parts, particularly the robot arm and other types of end-effectors. Unexpected 

and unintentional collisions can cause a variety of accidents and crushes if the mechanical risks 

are not appropriately detected, predicted, and handled. 

Collaboration is the shared activity of people and robots in a shared workspace to 

complete a set of specific working tasks. It often requires all parties to engage in either 

synchronised, synchronous, or sequential activities (Wang et al., 2017), with physical contact 

permitted. Thus, safety considerations must be made to avoid dangers and potential sources of 

damage. The impact of collaborative work can result in injury to the operators. Depending on 

the application, potential hazards are associated with the procedures to be carried out in 

collaborative activities. These include mechanical, electrical, thermal, noise, vibrations, 

radiation, material/substance, work-environment, and combination risks. 

The most typical risks are mechanical in nature. Typical mechanical risks include 

crushing, shearing, cutting, tangling, trapping, impact, stabbing, and abrasion. Nonetheless, 

hazard situations such as entrapment between components of the robot system and workplace 

(e.g., equipment, fixtures, guards, etc.), entrapment between parts of the robotic system itself 

(cables, manipulator, end-effector, etc.), unexpected or unwanted contact with moving parts, 

effects related to the loss of the workpiece during handling and processing, and effects related 

to the specific loss (screwing, glueing, etc.) can be harmful. 

Based on these circumstances, the official guidelines (ISO 10218, ISO/TS 15066) 

recommend four safety modes Figure 2.12.  

 

Figure 2.12 – 4 modes of HRI (ISO/TS 15066:2016 Robots and robotic devices, 2016) 
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Safety-Rated Monitored Stop (SRMS) is an active functional measure implemented as 

an operation in which the robot remains powered, but the robot and operator do not interact in 

the shared workspace at the same time: in this mode, the robot is stopped while interacting with 

the operator in the collaborative workplace. Before the person reaches the shared workspace, 

the robot must have safely stopped. It is also possible to schedule an automatic restart when the 

operator leaves the workplace. Thus, human-robot collisions are impossible. (Amiucci et al., 

2022). 

Hand-Guided operation (HG) is a mode with zero-gravity control, that is, control 

without actuation beyond gravity compensation, guided exclusively by an operator: the safety 

of the HRC is assured by the robot being guided manually and controlled at an appropriately 

reduced speed (Arai et al., 2010). Hand guidance requires the robot to be in a compliant state, 

with control exerted by the operator through physical manipulation. In this controlled mode, no 

hazards may arise because of the transition between manual control and any other form of 

operation. Thus, collisions between human and the robot are not possible (Ogura et al., 2012). 

Speed and Separation Monitoring (SSM) is an active functional measure in which speed 

is constantly adjusted to the distance between the robot and the operator: both the robot's speed 

and motion path (i.e., trajectory) are tracked and adjusted based on the operator's position and 

speed in the collaborative workplace. In this technique, cobots and humans can work together 

in a collaborative environment. Safety devices, such as sensors, measure the distance between 

the two agents. Thus, the collision is avoided by stopping the robot immediately (Nandeshwar 

et al., 2022). 

A general formula to calculate the minimum distance between the human and the robot 

is: 

𝑆 =  (𝐾 × 𝑇) + 𝐶 (1) 

 

Where: 

S = minimum distance between human and robot (mm). 

K = parameter derived from data regarding the approach speed of the body (mm/s). 

T = overall system stopping performance. 

C = intrusion distance. 

Another formula regarding the protective separation distance for HRC applications 

considers the relative speed between the human and the robot: 

𝑆𝑝(𝑇0) =  𝑆ℎ  +  𝑆𝑟 +  𝑆𝑠 + 𝐶 +  𝑍𝑑 +  𝑍𝑟 (2) 

 

This calculation contains the following additional parameters: 

- Robot’ system reaction time and stopping distance (Sr, Ss) at T0. 

- Position uncertainty of the operator and the robot system (Zd, Zr). 
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To sum up, in this collaboration mode, the human has access to the collaborative 

workplace while the robot is moving. The safety is based on distance and collisions are not 

possible as short distances trigger safe stops. 

Finally, Power and Force Limiting (PFL) is an approach in which the robot's impact on 

the human body is reduced, and the robot's power and applied forces are limited: physical 

contact between the robot system (including the workplace) and the human operator can occur 

intentionally or unintentionally. In this mode, a robot should not impact a human with more 

than a predetermined force, with allowable forces determined for various impact sites on the 

body. Risk minimization is achieved due to the robot's intrinsic safety design and functions. 

There are two sorts of collisions: quasi-static and transitory. This last mode is the most recent 

novel sort of human-robot collaboration, yet it remains the least prevalent in industrial 

manufacturing situations (Aivaliotis et al., 2019). 

Different authors use a combination of these modes. A discrete-event controller, as 

proposed by Heinzmann and Zelinsky (2003), is a mode that is always active during 

collaborative activities. Long et al. (2017) present a distance-triggered system for switching 

between nominal (maximum velocity), reduced (speed limiting), and passive (hand-guided) 

operating modes. Kaiser et al. (2018) and Villani et al. (2018) define and integrate these modes 

into work arrangements. 

In another research studies, authors present some scenarios of HRI. The collaboration 

between an operator and a cobot can be categorized into several modes, each characterized by 

the level of interaction and the type of tasks performed, as shown in Figure 2.13.  

 

Figure 2.13 – Different degrees of HRI (International Federation of Robotics, 2020) 

These modes are designed to leverage the strengths of both humans and robots, ensuring 

safety, efficiency, and productivity. 

a) Encapsulation in a fenced robot workspace. In this scenario, the full automation 

may increase productivity, but it is expensive and does not have the flexibility 

required to adapt to frequent variable productions. Therefore, in the past, robot 

automation was mainly employed in a mass production context (Lee et al., 

2020). Furthermore, the human operator supervises and monitors the cobot 
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while it performs tasks autonomously. The human may intervene as needed, for 

example, to handle exceptions or adjust (Banerjee et al., 2015). 

 

b) Co-existence without fencing but separation of human and robot workspace. In 

this mode, humans and cobots share the same workspace but do not interact 

directly with each other. The tasks are performed independently, but the 

presence of safety features allows them to operate in proximity without physical 

barriers (Hande et al., 2022). 

 

c) Sequential collaboration where operators and robots work in the same 

workspace but with sequential movements. Here, humans and cobots work on 

the same task but at different times. For example, a cobot might prepare a part 

that a human then inspects or finishes. The interaction is time-separated, 

meaning the human and the cobot are not working on the task simultaneously 

(Hjorth and Chrysostomou, 2022). Furthermore, in this mode, the cobot acts as 

an assistant to the human operator. It might provide necessary tools, hold objects 

in place, or perform other supportive tasks to ease the human's workload. The 

cobot 's actions are directly responsive to the human's activities (Gordon et al., 

2023). Sequential collaboration and co-existence are the most diffused types of 

interactions adopted in HRI applications. 

 

d) Cooperation with alternative exclusive use of the shared workspace. In 

cooperative collaboration, both the human and the cobot work on the same task 

at the same time, but they perform different actions. For instance, a cobot might 

hold a component steady while a human performs welding. This mode requires 

precise timing and coordination (Costa et al., 2022). 

 

e) Hand Guiding or Lead-Through Programming: this involves the human operator 

physically guiding the cobot through desired motions or tasks. The cobot learns 

these movements and can then replicate them independently. This mode is often 

used for programming or teaching the cobot new tasks (Kan et al., 2021). 

 

f) Collaboration with simultaneous use of the shared workspace and close 

interaction. In this advanced mode, both the human and the cobot have control 

over the same task simultaneously. This requires highly sophisticated control 

systems and safety mechanisms to ensure smooth and safe interaction (Herlant, 

2018). Cobots in this mode can adapt their behaviour based on the human 

operator's actions. They use sensors and AI algorithms to understand and 

anticipate the needs of the human, adjusting their actions in real-time for 

optimized collaboration (Zhao et al., 2021). 

Every method of collaboration is appropriate for a range of tasks and work situations. 

The choice of mode is determined by criteria such as task complexity, safety issues, necessary 

precision, and desired amount of human involvement. As cobot technology advances, these 

modes improve, allowing for even more smooth and efficient HRC. 

In this context, criteria for designing and implementing cobots in collaborative workplaces for 

HRI applications must be followed (Gualtieri et al., 2022).  

To supplement these standards, more substantial and identifiable technical deliverables (such 

as technical specifications and technical reports) are provided to better integrate the information 



29 

 

included, as seen in Figure 2.14. These regulations are crucial in promoting the safety of 

machinery and equipment on the EU market, thereby protecting the health and safety of users 

and consumers. Compliance with the Directive helps to ensure that machinery is designed, built, 

and utilised safely, lowering risks, and preventing accidents and injuries. 

 

Figure 2.14 – Guidelines for HRC 

The standards are grouped into the following primary groups, which target varying 

levels of specifics in the design framework for the realisation of machines: 

 The Machinery Directives 2006/42/CE* are applied to ensure a high level of 

safety for machinery and equipment placed on the European market. It sets out 

essential health and safety requirements that machinery must meet before it can 

be placed on the market or put into service within the EU. Machinery that meets 

the requirements of the Machinery Directive must be affixed with the CE 

marking before it can be placed on the EU market. The CE marking indicates 

that the machinery complies with all relevant EU directives and regulations, 

including the Machinery Directive.  

 Type-A standards cover methodology and fundamental concepts for designing 

and producing machines. They are fundamental safety criteria that apply to all 

machines (ISO 12100:2010 Safety of Machinery). 

 Type-B standards address generic safety needs that are general in the design of 

most equipment. 

 Type-C standards specify extensive safety requirements for a single machine or 

set of machines. They are machine safety standards that establish an expectation 

of conformity for the fundamental legal conditions addressed in the standard. 

Occupational dangers associated with industrial equipment vary depending on 

the nature of the hazards.  

These standards, defined as harmonised standards, represent the only way for the design 

of the system, defining its state of the art and making compatible with other systems. Though 

these standards are not mandatory for designers, they must be applied to guarantee the quality 

of safety of cobot applications in industrial processes. 

These standards provide guidelines for the design, implementation, and operation of 

cobots. The most relevant safety standards for cobots include: 
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 ISO 10218-1 and ISO 10218-2: These are the primary international standards 

for industrial robot safety. Part 1 (ISO 10218-1) covers the general requirements 

for industrial robots, while Part 2 (ISO 10218-2) addresses the requirements for 

the robot system and integration. 

 ISO/TS 15066: This is a technical specification supplementing ISO 10218 

standards. It provides detailed guidance on the safe design, implementation, and 

operation of collaborative industrial robot systems. ISO/TS 15066 specifically 

addresses safety-related issues when humans and robots share the same 

workspace and includes guidelines on maximum allowed power and force for 

various parts of the human body in the event of an accidental collision. 

 EN ISO 13849-1 and EN 62061: These European standards cover the safety of 

machinery and control systems. While not specific to robotics, they are often 

applied in the context of cobot safety to assess and mitigate risks associated with 

the control systems and software used in robotic applications (Robinson, 2008). 

These standards typically cover aspects such as: 

o Risk Assessment: Procedures for conducting risk assessments and determining 

necessary safety measures. 

o Safety-Related Parts of Control Systems: Requirements for the performance and 

reliability of safety-related parts of control systems. 

o Collaborative Operation Modes: Specifications for different collaborative 

modes (SRMS, HG, SSM, PFL). 

o Protective Measures: Guidelines on protective measures such as safety 

distances, guarding, and emergency stops. 

Adherence to these standards is crucial for the safe integration of cobots in industrial 

environments. They help ensure that the design, installation, and operation of cobots minimize 

the risk of injury to human workers, while also maintaining efficient and effective operation. 

As cobot technology evolves, these standards are periodically reviewed and updated to reflect 

new safety concerns and technological advancements. 

2.3.9. Choice of Cobot’s End-Effector 

An end-effector is a device or tool that attaches to the extremity of a robotic arm and is 

an important component of robotic systems. Essentially, it is the part of the robot that interacts 

directly with its surroundings to fulfil a specified task. The design and functionality of an end-

effector are heavily influenced by the robot's intended use. An end effector's principal job is to 

do the task for which the robot is designed, such as grabbing, welding, cutting, painting, 

assembling, or any other specified action. (Li and Fritz, 2015). 

There are various types of end-effectors, each designed for different tasks. Common 

types include: 

 Grippers: Used for grasping, holding, and moving objects. They come in various 

designs, such as two-finger (parallel or angular), three-finger, or more complex 

forms for handling irregularly shaped objects. 

 Welding Torches: For robotic welding applications. 

 Spray Guns: Used in painting or coating applications. 

 Drills and Screwdrivers: For assembly tasks that involve drilling or 

screwdriving. 
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 Cameras and Sensors: For inspection tasks where the robot needs to see or sense 

its environment. 

Some robots are designed with interchangeable end-effectors, allowing them to perform 

a variety of tasks. Quick-change systems enable the robot to switch between different end-

effectors automatically. Moreover, end-effectors are designed to provide precision and control 

in their operations. For example, grippers may have force control to handle delicate objects 

without damaging them. 

The material and design of an end-effector depend on its intended use, the environment 

in which it will operate, and the properties of the objects it will handle (e.g., size, weight, surface 

texture).  Many end-effectors are equipped with sensors that provide feedback to the robot’s 

control system, such as force sensors in grippers or vision systems in cameras. This feedback 

is crucial for tasks that require precision or adaptability to varying conditions. 

To conclude, End-effectors are essential for extending the capabilities of robotic 

systems, enabling them to interact with and manipulate their environment effectively. The 

selection or design of the appropriate end-effector is crucial for the success of any robotic 

application. The Figure 2.15 shows the typical types of grippers used in manufacturing for 

industrial HRC activities. 

 

Figure 2.15 – Types of grippers 

2.3.10. Key Performance Indicators in Human-Robot Collaboration 

To conclude this chapter, this section describes the key performance indicators (KPIs) 

highlighted in literature review for industrial collaborative applications between operators and 

cobots. 

The evaluation of appropriate KPIs is an ongoing challenge to improve efficiency, 

productivity in HRC. 

Other writers use different KPIs to track and monitor the execution of HRC tasks. 

However, because HRC covers a wide range of topics, a systematic classification and gathering 

of these KPIs is introduced to address the many features of KPIs in HRC for industrial 

processes.  

 

 

 

 



32 

 

Table 2.1 presents the classification of KPIs in HRC. 

Table 2.1: Overview of the distinctive KPI’s adopted in some research studies in HRC dealing 

with Productive, Economic, Safety, and Ergonomics aspects. 

Authors Productive 

aspects 

Economic 

aspects 

Safety aspects Ergonomics 

aspects 

Zimmermann 

[8] 

Job Execution 

Time; 

Actuation 

Latency; 

Pose Travel 

Time. 

Cost of Robot 

Energy 

Consumption 

Position 

Accuracy; 

Position 

Repeatability. 

 

Dannapfel et 

al. [10] 

   Ergonomic 

Assessment  

Galin et al. [28] Takt Time; 

Energy 

expended 

 Speech and 

physical 

contact; Robot’s 

path trail 

Visual 

perception  

Papanastasiou 

et al. [30] 

Workstation 

cycle time 

Return Of 

Investment 

(ROI) 

Left and right 

side–cycle 

deviation 

Operators’stress 

Chromjakova 

et al. [31] 

Availability; 

Lead Time; 

Data complexity  

 System incident 

reaction time 

Human-cobot 

ethical 

cooperation  

Horst et al. 

[32] 

Cobot's 

accuracy and 

repeatability  

Time to full 

ROI 

  

Colim et al. 

[33] 

Time data; 

Production 

Rate; 

Variability; 

Material 

Consumption 

 Physical 

Ergonomic 

Assessment 

Zanchettin[34] Accuracy of the 

operator; 

Time required 

to perform the 

task 

 Rate of 

assistance given 

by the robot 

Value 

of displacement 

from the 

ergonomic 

posture 

Bouchard and 

Couture [35] 

Cycle Time, 

Cycles 

Completed, 

Yield, 

Efficiency, 

Wait Time, 

Disconnected 

Time 

   

Landini et al. 

[36] 

  Reportable 

health and 

safety inicidents 

Physical and 

mental 

workload 
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Furthermore, it should be noted that there is no predetermined collection of general 

performance indicators for every organisation, but the cautious selection is established by the 

company's own aims. Furthermore, gathering data for any KPI requires a significant amount of 

effort. The performance optimisation of the robotic cell must be an ongoing act ivity. Dynamic 

changes in those new smart technologies seeking to reinvent manufacturing plants, and 

managers should focus on the KPIs to see what consequences those changes have in the long 

run (Caiazzo et al., 2022). 

2.4 ERGONOMICS IN HRC 

Ergonomics is the scientific study of how individuals interact with other system 

components. It employs theories, concepts, data, and procedures to enhance human well-being 

and overall system performance. It is the process of designing workplaces, items, and systems 

to suit the people who use them rather than pushing them to adapt to technology. The history 

of ergonomics can be linked back to past civilizations, although its officially recognised growth 

began in the beginning of the twentieth century (Stanton et al., 2012). 

In 1857, Polish academic Wojciech Jastrzębowski invented the term "ergonomics" in 

his work "The Outline of Ergonomics, or the Science of Work". However, it was not until World 

War II that ergonomics received widespread attention. Because of the war's complicated and 

sophisticated technology, it became clear that customising equipment and systems to meet the 

user's physical and cognitive skills may increase productivity and safety. This marked the birth 

of ergonomics as a distinct scientific discipline devoted to optimising human-machine 

interactions. Effective ergonomic design can bring to higher productivity, improved work 

quality, reduced discomfort and injuries, and higher worker satisfaction (Karwowski, 2006). 

However, when new technology is introduced into an organisation, the ergonomic 

aspects are often overlooked (Gladysz et al., 2023). A research study confirms that optimising 

job allocation while considering ergonomic considerations increases efficiency and acceptance. 

Moreover, the concept design considers human mental and physical viewpoints at the same 

time by suggesting a hand-guiding on the robot to allow users to have control over the system, 

having the robot as a helper instead of a robot giving an object (Hemono et al., 2023). 

Key aspects of ergonomics include (Stanton et al., 2012): 

 Physical Ergonomics: it relates to the individual's responses to physical and 

physiological work demands. Repetitive tasks, muscle use, workplace layout, 

and safety are among the topics addressed. 

 Cognitive Ergonomics: it comprises mental processes including perception, 

recall, reasoning, and motor reaction, all of which have an impact on human-

system interactions. This may include cognitive workload, decision-making, 

performance, human-computer interaction, human dependability, work stress, 

and training. 

 Organizational Ergonomics: it focuses on optimising socio-technical systems, 

including their organisational structures, policies, and processes. Topics such as 

teamwork, communication, work design, telework, and flexible working hours 

are included. 

In HRC, the first two types of ergonomics are crucial to determine an effective 

collaboration between human and robot (Simone et al., 2021). 
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Several studies in the discipline of physical ergonomics research have investigated 

various assessment methodologies and their applicability in the workplace. One prominent 

study focused on ergonomic examinations in various occupations, emphasising two popular 

methods: Rapid Upper Limb Assessment (RULA) and Rapid Entire Body Assessment (REBA). 

These methods are used to evaluate the risk of work-related musculoskeletal disorders 

(WMSDs) in a variety of occupational settings, including diverse industries and professions 

(Hignett and Mcatamney, 2000; Mcatamney and Corlett, 2004). 

Other observational methods were applied in the evaluation of physical strain in 

industrial settings. These are OCRA (Rana et al., 2020), the Key Indicator Method for Manual 

Handling Operations (KIM-MHO) (Klussman et al., 2010), and the Strain Index (SI) 

(Kapellusch et al., 2021).  

Furthermore, some of the examined research used direct measuring ergonomic 

approaches. These technologies use sensors linked to workers' bodies to directly quantify the 

effect of risk variables on physical and biomechanical parameters (Merino et al., 2018; 

Lorenzini et al., 2023).  

In cognitive ergonomics, on the other hand, work-related stress typically emerges when 

the demands surpass the worker's ability to perform. Stress has been related to detrimental 

effects on people's feelings, thoughts, and behaviours, and it has been found to have 

psychological ramifications for workers, such as a negative emotional state of worry and 

frustration. At the physiological level, it can disrupt unconscious vital functions such as heart 

and breathing activity, while at the physical level, it affects normal posture and body activity 

(Kim et al., 2021; Lagomarsino et al., 2022). 

Physiological stress has further impacted on production activity since it is positively 

correlated with errors and attention spans at work, lowering worker quality and performance 

and resulting in new expenses and losses for businesses. Given the numerous effects of stress 

on human health and company efficiency, the literature emphasises the significance of studies 

focusing specifically on the stress phenomenon related to smart and intelligent manufacturing 

systems, suggesting appropriate assessments for stress evaluation to support the advancement 

of research in this field (Colim et al., 2021). 

Among these measurements, the NASA Task Load Index (NASA-TLX) is a widely 

used, subjective, workload assessment tool developed by the Human Performance Group at 

NASA's Ames Research Center (Hart and Staveland, 1988). It is designed to provide an overall 

overview of the workload based on a weighted average of ratings defined in six subscales 

(Mental Demand, Physical Demand, Temporal Demand, Performance, Effort and Frustration 

Level). 

These dimensions are evaluated by the person performing the task, reflecting their 

personal experience and perceived workload. After rating each of these areas, the scores are 

combined to create an overall overview of the workload. This tool is used in various fields, 

including aviation, healthcare, and automotive design, to define the workload associated with 

different tasks and environments. It helps understand how demanding a task is from the user's 

perspective, which is crucial in designing systems, interfaces, and workflows that are effective 

and user-friendly. 
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2.5 PHYSIOLOGICAL MEASUREMENTS 

Physiological measurements are quantitative assessments of several functions and 

properties in the human body. These measurements are crucial to evaluate health, physical 

fitness, and physiological reactions of individuals to various stressors. They are commonly 

employed in healthcare, sports science, psychology, and research contexts. Here is a list of some 

common physiological metrics. 

The deployment of these innovative measurements properly requires a rigorous design, 

the choice of appropriate technology, consideration of user experience and privacy, and good 

data analysis and interpretation methodologies. The specific approach will vary according on 

the deployment's circumstances and objectives. 

Physiological measurements and subjective measurements both have their unique 

advantages in assessing distinct aspects of human health, performance, and psychological 

states. Moreover, physiological measurements are objective and quantifiable, which reduces 

the bias and unpredictability found in self-reported data. Many physiological indicators can be 

continually monitored over time to provide a dynamic picture of how they change in response 

to stimuli or activities. Furthermore, physiological assessments can detect changes that 

individuals may not consciously notice, making them a more sensitive tool for analysing 

responses to stimuli or interventions (Jakopin et al., 2017). 

In terms of versatility, many physiological measurements (like heart rate, skin 

conductance, electroencephalogram) are non-invasive and cause no discomfort to the subject. 

They can provide immediate feedback, which is critical in different settings such as medical 

monitoring, athletic performance, and psychological research. Physiological measurements 

provide numerical data that can be deployed for statistical analysis and scientific inquiry. Heart 

rate variability, for example, can indicate cardiovascular health. Physiological measures have 

applications in a variety of sectors, including healthcare, psychology, ergonomics, and human-

computer interface (Iredahl et al., 2015; Madan et al., 2017; Zhou et al., 2022). 

Subjective measures, on the other hand, capture personal experiences and impressions 

that are important in understanding an individual's point of view, particularly in psychological 

and sociological studies. These measurements are frequently easier and less expensive to gather 

than physiological data, and they require only basic laboratory equipment. Subjective 

measurements can provide a more complete picture of a person's well-being, capturing aspects 

that physiological tests cannot. Nevertheless, they can be more sensitive to cultural and 

contextual factors affecting an individual’s experiences and responses (Puspasari et al., 2015; 

Panchetti et al., 2023). 

Physiological and subjective measurements play significant roles in research and 

practice. The choice between them, or the decision to utilise a combination of both, is 

determined by the assessment's specific aims, the nature of the phenomena under investigation, 

and practical issues such as resources, expertise, and the population under study. In many 

circumstances, combining the two types of measures can provide a more complete picture than 

either strategy alone (Caiazzo et al., 2023). 

Currently, no standards exist for both objective and subjective indicators. Objective 

indicators, particularly physiological ones, lack consistency not only in mathematical 

calculations but also in nomenclature. Each physiological signal feeds different series of 

algorithms for calculating stress levels, or the same signs with different labels and acronyms, 
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complicating the comparison of results between investigations. Furthermore, the range of 

devices for biometric data gathering indicates a gap. 

Although the type of sensors adopted depends above all on the context in which the 

experimental activities are carried out, small wearable devices are the most appropriate for 

measuring the physiological and physical activities of workers in in-field experimental 

activities but do not allow the integral signal to be captured or the original and continuous vital 

processes of the workers to be carried out since they provide a direct measure of the indicators, 

limiting the potential detailed analysis of data.  

On the other hand, the most sensitive sensors and devices are difficult to integrate into 

practical industrial systems because they produce a significant percentage of artefacts and noise 

in the data obtained, and their installation may create discomfort for participants and workers. 

As a result, the literature lacks a compromise that justifies and standardises the widespread 

deployment of either type of device. 

2.6 PERFORMANCE-BASED MEASUREMENTS 

Performance-based metrics analyse an individual's ability to complete a task or activity, 

providing specific information about functional skills. Many performance-based assessments 

are standardised, which means they are administered consistently across individuals, increasing 

impartiality, and allowing for comparisons. These measures frequently produce measurable 

data, such as the time required to complete a job, the number of successfully completed items, 

or the distance covered in a physical exam.  

Furthermore, performance-based assessments can be tailored to evaluate specific skills 

or competences, ranging from cognitive functions (such as memory or attention) to physical 

capacities (such as strength or endurance). When paired with other types of metrics (such as 

physiological or subjective), they enable a more thorough assessment of an individual's overall 

functioning, offering valuable feedback for individuals to understand their current level of 

performance and areas for improvement (Puente et al., 2014; Caterino et al., 2023). 

To note, performance can be influenced by external factors like environmental 

conditions, emotional state, or fatigue, which should be considered during assessment. Some 

performance-based tests may require specific equipment or expertise to administer and 

interpret. These tests can be physically or mentally demanding for the participant, which might 

limit their suitability in certain populations. 

2.7 NEUROERGONOMICS AND MENTAL WORKLOAD 

The limitation in the Ergonomics domain is that all evaluations of the workers' cognitive 

state are qualitative and rely on overt performance measurements, which are often undertaken 

in post-hoc analysis. To address these disadvantages and give objective measures of workers' 

cognitive state, psychophysiological approaches, which were first utilised only in the medical 

profession, were recognised for use in HF/E investigations (Stanton, 2012). Andreassi (2000) 

suggested one of the definitions of psychophysiology: "Psychophysiology is defined as the 

study of the relationship between psychological manipulation and resulting 

psychophysiological responses, measured in living organisms, to promote understanding of the 

mental and bodily processes". 

Traditionally, ergonomics research and practice has not considered neuroscience or 

findings concerning brain mechanisms that underlies human perceptual, cognitive, affective 
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and motor processes (Parasuraman and Rizzo, 2006). This is not surprising, since Ergonomics 

has its roots in a psychology of 1940s that was firmly in the behaviorist camp (Parasuraman 

and Rizzo, 2006), where researchers were using solely the simplified stimulus response (S-R) 

approach, but also due to slow shifts from behavioral to cognitive approach in psychology itself. 

More recently, however the ergonomics was influenced by the cognitive psychology, but still 

the neuroscience continued to be ignored (Parasuraman and Rizzo, 2006). One of the main 

reasons for this is that primary interest of ergonomics is assessment of broad psychological 

constructs and high-level cognitive functions, which are still not likely to be effectively mapped 

in the neuronal network of brain functioning. For that reason, the focus on ‘large’ cognitive 

constructs still represents a major challenge for the neuroergonomics (Sarter and Sarter, 2003). 

Neuroergonomics is a field that integrates neuroscience and ergonomics to research the 

brain and workplace behaviour. It focuses on comprehending how the human brain absorbs 

information and makes judgements in work settings. This discipline tries to create tools, 

devices, and systems that improve human performance and safety while reducing the possibility 

of error. Neuroergonomics uses neurological principles to increase workplace efficiency, 

productivity, and well-being. It covers a variety of topics, including cognitive burden, human-

computer interface, and the physical and mental components of job design. Neuroergonomics 

and cognitive ergonomics are independent topics, albeit they share significant similarities. 

Cognitive ergonomics studies how mental functions such as perception, memory, reasoning, 

and response interact with other system components 

Neuroergonomics, on the other hand, takes it a step further by incorporating ideas from 

neuroscience. It investigates how the brain functions in connection to job activities, utilising 

neuroscientific tools to better understand cognitive processes. Neuroergonomics seeks to 

optimise system design by studying how the brain processes information and responds to 

various inputs in work contexts (Mijovic et al., 2017). It is concerned with mental workload, 

decision-making, human-computer interaction, and similar topics (Dehais et al., 2020). 

The term neuroergonomics is derived from the Greek terms neuro, meaning "relating to 

nerves or the nervous system," and ergonomics, which means "the study of work"—the study 

of the brain and its conduct at work. Neuroergonomics is a growing topic that investigates 

human brain function and behaviour in relation to behavioural performance in natural and 

everyday settings. Neuroergonomics has an impact on a wide range of disciplines; research 

have been conducted in the military, healthcare, employment, and educational settings, among 

others. 

Thus, neuroergonomics has a significant impact; nevertheless, there are currently few 

books that provide students, practitioners, and researchers, even those outside of academia, with 

a single, go-to source covering state-of-the-science material regarding neuroergonomics (Ayaz 

and Dehais, 2021). 

Neuroergonomics arose as a unique field of research in the late twentieth and early 

twenty-first centuries, relying on the foundations of traditional ergonomics as well as advances 

in neuroscience. It emerged from a need to comprehend the complicated relationships between 

brain functions and work contexts, especially as technology became more interwoven into daily 

duties. Raja Parasuraman and Matthew Rizzo popularised the term "neuroergonomics" in their 

important 2006 book, "Neuroergonomics: The Brain at Work". They attempted to bridge the 

gap between neuroscience and human factors/ergonomics by examining the brain's role in 

workplace activities and settings (Parasaruman and Rizzo, 2006). 
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2.7.1. Mental Workload 

Workload is the quantity and intensity of work demands placed on an individual. This 

can include physical tasks, cognitive processes, and emotional stress. Workload is frequently 

evaluated in terms of how well these demands match an individual's strengths and resources. 

Understanding workload is critical in ergonomics and workplace design to prevent employees 

from being overburdened, which can lead to stress, lower productivity, and health issues. 

Effective workload management seeks to strike a balance in which people are challenged but 

not overwhelmed, maintaining efficiency and well-being (Kantowitz, 2020). 

Mental workload (MWL) is the cognitive effort necessary to complete an activity. It 

refers to the mental capacities used during task performance, such as attention, memory, 

decision-making, and problem solving, as shown in Figure 2.16. Mental burden is an important 

issue in ergonomics and human factors since it influences a person's performance and well-

being. A high MWL can lead to errors, lower productivity, and stress, whereas a low MWL can 

cause boredom or under-stimulation. Properly managing mental strain is critical for improving 

job performance and guaranteeing safety in a variety of contexts, particularly complicated or 

high-risk environments such as aviation, healthcare, and driving. It is a multidimensional 

concept that refers to the amount of mental effort and energy required to complete a task or a 

series of actions (Longo et al., 2022). 

 

Figure 2.16 – Mental Workload as the gap between the Available Capacity and the 

Demand of the primary task 

The definition of MWL can be understood from several perspectives: 

 Capacity Demand Perspective: from this view, MWL is defined as the 

proportion of an individual's cognitive capacity that is being used to perform a 

task. Human cognitive capacity is limited, and different tasks demand varying 

amounts of this capacity. When a task requires a high proportion of this capacity, 

it is said to impose a high MWL. 

 Subjective Experience: MWL is also defined by the subjective experience of the 

individual performing the task. This involves feelings of effort, stress, and strain 
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that a person might report while engaging in a task. Subjective measures, like 

self-report questionnaires, are often used to assess this aspect. 

 Performance-Based Definition: MWL is inferred from the performance on a 

task. If a task leads to reduced performance, increased errors, or longer reaction 

times, it is often interpreted as a sign of high MWL. 

 Physiological Response: MWL can also be defined in terms of physiological 

responses. Certain bodily functions, like heart rate variability, brain activity 

patterns, and pupil dilation, can change in response to increased cognitive 

demands, thus providing an indirect measure of MWL. 

 Task Characteristics: sometimes, MWL is defined in terms of the characteristics 

of the task itself, such as complexity, duration, amount of information 

processing required, and the level of multitasking. 

In summary, MWL is a concept that encapsulates how much cognitive effort is required 

to perform a task, influenced by the individual's cognitive capacity, the demands of the task, 

and the individual's subjective experience. It's a dynamic concept that varies not only between 

different tasks and environments but also between individuals. 

Humans' ability to obtain information has an impact on their MWL. When there is an 

abundance of information, individuals may experience overload, making it harder to 

comprehend and make judgements. This overload can raise mental burden, causing tension, 

disorientation, and impaired decision-making ability. The ease with which information can be 

obtained influences mental effort. Easily available information can lessen the mental effort 

necessary to locate and use it, lowering the MWL. In contrast, if the access of knowledge is 

difficult or time-consuming, the mental effort may increase (Leva et al., 2022). 

The trustworthiness and usefulness of the information are other important 

considerations. High-quality, relevant information can help to streamline decision-making 

processes and reduce MWL. Poor-quality or irrelevant information, on the other hand, might 

raise MWL because it requires more effort to check and sift through. Individual differences in 

cognitive capacities, such as memory capacity, attention, and processing speed, influence how 

information affects mental effort (Xiao-ming and Jie-fang, 2009). People with better cognitive 

capacities may be able to process information more efficiently, resulting in a lesser mental effort 

under the same settings as those with lower cognitive capacities. According to the Ebbinghus 

curve, Figure 2.17,  about 50% of a person's memory capacity is lost after 1 day: 
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Figure 2.17 – Ebbingaus Forgetting Curve 

Ebbinghaus' Forgetting Curve empirically shows the gradual reduction in memory recall 

over time. This curve depicts how information is lost over time when no attempt is made to 

keep it. It was developed by Hermann Ebbinghaus, a German psychologist, in the late 

nineteenth century, based on his experimental research of memory and forgetting (Ferreira et 

al., 2023). 

Furthermore, Miller's Law, Figure 2.18, developed by cognitive psychologist George 

A. Miller, describes the limits of human memory ability, particularly short-term memory. Miller 

proposed that the average number of objects an individual can keep in working memory is 

roughly seven, plus or minus two. This suggests that most people can store five to nine items 

in their short-term memory. This theory has influenced a variety of sectors, including 

psychology, design, marketing, and communication. It determines how information is presented 

to make it more digestible and remembered, such as in website design or instructional materials 

(Cowan, 2015). 
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Figure 2.18 – Miller’s Law Curve (Cowan, 2015) 

The task's complexity also impacts this relationship. Access to required information, 

especially for complicated jobs, can lessen MWL by offering direction. However, for easier 

jobs, too much knowledge may complicate the process and raise the mental burden. Thus, using 

technology to manage and filter information has a substantial impact on MWL. The proper use 

of technology tools can lessen MWL by organising and prioritising information. However, 

learning to utilise these technologies or coping with poorly designed interfaces may temporarily 

raise MWL (Cowan, 2022). 

Many businesses, particularly those in industrialised countries, have shifted away from 

physical labour and towards knowledge-based work. This shift emphasises cognitive tasks such 

as information processing, decision-making, and problem solving, making MWL more 

important for job performance. In many high-stakes contexts (e.g., aviation, healthcare, nuclear 

power operations), MWL is critical because cognitive overload can lead to errors with serious 

repercussions. In these situations, mental burden strongly influences the quality of decision-

making and situational awareness, which is often more important than physical exertion 

(Nielsen and Brix, 2023). 

Furthermore, with the growth of automation and advanced technology, many jobs have 

seen a major reduction in physical workload. However, this has frequently resulted in higher 

mental demands, as employees are asked to monitor systems, make judgements based on 

complex information, and manage numerous activities at once. The nature of work has changed 

as more people participate in prolonged computer use, multitasking, and dealing with 

information overload. These modifications increase the prominence of cognitive demands and 

their impact on total work performance (Ávila-Gutiérrez et al., 2022). 

Thus, when designing workplaces, tools, and systems, MWL must be taken into account 

in order to create user-friendly and efficient environments. This includes designing software 

interfaces, arranging control rooms, and even organising labour assignments. Understanding 

mental effort is critical for building appropriate automation and technological aids. Properly 
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designed technology can eliminate excessive mental effort, freeing individuals to focus on more 

important tasks. 

By monitoring and managing MWL, it is possible to predict situations where errors are 

more likely and take proactive steps to prevent them. The key is to understand and balance the 

MWL to ensure safety, health, and productivity in today’s fast-paced work environments (Fan 

and Smith, 2017). 

Grech et al. (2009) argued that the relationship between effort and fatigue could be 

dynamic, with the optimal degree of exertion changing over time. Workplace performance 

suffers as a result of a heavy workload and weariness. A heavy workload is related to the fit or 

gap between task needs and people's capacities. 

Prolonged work tiredness can be caused by a variety of factors. First, weariness is 

thought to be caused by high job demands and insufficient job control (Fan and Smith, 2017). 

Job demands refer to the workload, whereas job control refers to the individual's ability to 

control work activities. Second, fatigue is influenced by individual variations such as 

personality, coping styles, and health-related behaviours (Laaksonen et al., 2009). 

Third, weariness is closely linked to shift work, which disturbs the sleep-wake cycle 

and deprives workers of sleep, lowering levels of performance (Ferguson et al., 2008). 

Furthermore, in the railway business, the working environment and tasks frequently necessitate 

constant vigilance, which might contribute to weariness (British Office of Rail Regulation, 

2012). According to Lal and Craig (2001), known environmental factors impacting vigilance 

include noise, vibration, environmental contaminants, and a variety of stimuli. 

2.7.2. How to Measure Mental Workload 

Measuring workload can be approached through several methods, each focusing on 

different aspects of workload: 

 Subjective Measures: these involve self-report questionnaires or scales where 

individuals rate their perceived level of workload. An example is the NASA 

Task Load Index (NASA-TLX) or the Subjective Workload Assessment 

(SWAT), which assesse workload based on factors like mental demand, physical 

demand, and perceived performance (Hart and Staveland, 1988; Zak et al., 

2020). 

 Behavioral Measures: these are based on task performance metrics. For 

example, if a task becomes more challenging and a person's performance 

deteriorates, it may indicate increased MWL. Reaction time, error rate, and task 

completion time are typical metrics used (Luzzani et al., 2023). 

 Performance Measures: this approach evaluates workload by observing changes 

in performance on tasks. Decreases in accuracy or increases in task completion 

time can indicate high workload (Caterino et al., 2023). 

 Neuroimaging Techniques: Advanced methods like functional Magnetic 

Resonance Imaging (fMRI) or Positron Emission Tomography (PET) can be 

used to observe brain activity in specific areas, offering insights into MWL. 

However, these methods are more invasive and less practical in everyday 

settings (Winstein et al., 1997; Causse et al., 2021). 

 Physiological Measures: These include monitoring physiological responses such 

as heart rate variability, brain activity, or eye movements. Changes in these 
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responses can correlate with changes in MWL (Caiazzo et al., 2023; Upasani et 

al., 2023). 

 Dual-Task Methods: this approach involves having the person perform a 

secondary task in addition to the primary task of interest. The theory is that the 

more MWL the primary task requires, the poorer the performance on the 

secondary task (Pusica et al., 2024). 

Each method has its strengths and limitations, and often, a combination of these 

approaches is used to obtain a comprehensive assessment of workload. The choice of method 

depends on the context of the assessment, the type of task being performed, and the resources 

available. 

The MWL, as a multidimensional entity, has been broadly described as the resources 

available to meet the demands of an activity. Not only can an extremely high workload diminish 

human performance, but a low workload reduces the operator's motivation and interest in the 

task (Leva et al., 2022). In high workload settings, perception resources are drained, leading in 

deafness to auditory alarms, disregard for all incoming information, a slowing of decision-

making, and a worsening in attentiveness. As a result, a modest workload is required to ensure 

a safe and effective work environment. Taking human brain data into account should aid in the 

precise and continuous evaluation of the mental state and effort of the operator.  

2.7.3. Cobot and MWL 

Workload has a substantial impact on productivity when humans collaborate with 

robots. A well-balanced workload can boost productivity because robots can undertake 

repetitive or physically demanding jobs, freeing up people to focus on more complicated or 

decision-making duties. This collaboration may reduce human weariness and errors, resulting 

in more efficient work processes. However, if the burden is not effectively handled, it might 

result in operational inefficiencies. For example, over dependence on robots may erode human 

skills, whereas underutilization of robots may result in unneeded human workload. Thus, 

achieving peak production necessitates a deliberate distribution of duties and responsibilities 

between humans and robots (Hopko et al., 2022). 

More gradual cobot speeds were found to increase perceived team-fluency. This effect 

can be linked in part to the lack of transparency surrounding the cobot's goals, or perceptions 

of poor safety created by the motions, with two studies revealing that operators have a tendency 

to respond more slowly when the system's transparency is low (Koppenborg et al., 2017). 

Operators were shown to be more comfortable when employing 'human aware' cobots, which 

actively strive to predict the operator's next action (Lasota and Shah, 2015). 

Similarly, it is vital to examine how a cobot buddy will affect the operator's workload. 

As shown in Figure 2.19, the Yerkes-Dodson law shows that operator performance is strongly 

connected to the operator's cognitive arousal, with hyperarousal (overload) associated with 

stress and anxiety and underarousal associated with sleepiness and job disengagement (Corbett, 

2015). 
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Figure 2.19 – The Yerkes-Dodson Law (Corbett, 2015) 

The design of jobs resulting in operator overload can lower operator satisfaction while 

increasing tension and anxiety. Hyperarousal is not only dangerous to workers, but it can also 

lead to increased operator errors, resulting in workplace injuries. Underloading the operator, on 

the other hand, might result in boredom and task disengagement, lowering work performance 

and raising the likelihood of slips or lapses. To maximise operator performance and 

engagement, the operator should not be overloaded or underloaded (Weidemann and 

Russwinkel, 2021). 

The deployment of cobots is frequently meant to offload labour from the operator to the 

robot; yet, the introduction of cobots might raise cognitive load on the user by providing more 

complicated tasks or needing greater situation awareness cognitive resources to complete the 

activity. Such burden must be considered to avoid operator fatigue, anxiety, and reduced 

performance (Hopko et al., 2021).  

Authors claimed that age might influence trust in automatized systems: older people 

would be less prone to work with robots rather than younger ones (Scopelliti et al., 2005; Lee 

et al., 2009; Schaefer et al., 2014). Because cobot operators differs of various ages, age 

implications must be considered.  

Moreover, male, and female views of cobot capabilities, behavioural influence, and 

proxemic spacing have been shown to differ and, in some situations, to be more relevant than 

age (Nomura, 2017). Perceptions, values, and acceptance of cobots are different depending on 

male and female social behaviours and social norms (Mutlu et al., 2006). Finally, workers' pre-

experience is discovered to be a major component influencing workers' states (Wurhofer et al., 

2015). 

The combination of both subjective and objective measures is essential for accurately 

determining the impact of MWL on HRC. Subjective measurements, which were discovered to 

be more extensively employed, provide implicit information on the current state of the 

operator’s behaviour; yet, because most subjective data are discrete, dynamic state 

interpretation is more difficult to capture. In contrast, objective techniques are frequently able 
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to provide explicit continuous assessment, thus providing further insight into the mechanical 

effects of workload instantly as they occur (Jahedi and Méndez, 2014).  

Authors showed the application of both subjective and objective approaches to evaluate 

mental stress. They developed a cognitive workload classifier based on brain monitoring's 

determined spectral power density and coherence features. Furthermore, they discovered that 

the results of the subjective measurements are consistent with the results of workload 

observation (Amirhossein and Ehsan, 2019). 

Physiological measurements might objectively quantify and assess the level of MWL. 

These included: EEG, where increased cerebral cortical activation in the brain correlated with 

higher levels of MWL (Amirhossein and Ehsan, 2019); eye tracking, where average fixation 

time and pupil dilation were evaluated (Tang et al., 2019), (Kuz et al., 2018); heart rate 

monitoring, where respiratory sinus arrhythmia (RSA) was calculated but heart rate features 

were not explicitly reported (Kato et al., 2010). 

2.8 ELECTROENCEPHALOGRAM MEASUREMENT (EEG) 

Electroencephalography, or EEG, is a non-invasive, real-time, portable, and compact 

electrophysiological method that records the electrical activity of the brain by inserting 

electrodes on the user's scalp. EEG is a measurement of the brain's voltage fluctuations as 

sensed by scalp electrodes. Voltage variations caused by ionic current inside and between brain 

neurons account for the majority of electrical activity. The collected signals will subsequently 

be amplified, digitised, and transmitted to a computer or mobile device for data processing, as 

illustrated in Figure 2.20. It approximates the total electrical activity of neurons. EEG electrodes 

must detect the activity of a large number of neurons.  The timing of their activity is critical.  

Synchronised brain activity generates greater signals (Biondi et al., 2022). 

 

Figure 2.20 – Neural Activity of the brain (Lago and Cester, 2017) 
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The origins of EEG may be traced back to the late nineteenth century when scientists 

began to investigate the electrical activity of the brain. In 1875, British surgeon Richard Caton 

conducted animal tests that revealed the presence of electrical potentials in rabbit and monkey 

brains. In 1902, German psychiatrist Hans Berger began studying the electrical activity of the 

human brain. In 1924, he invented the first human EEG recording, which used electrodes put 

on the scalp and an ink writing technique to record brain waves. Berger's findings signalled the 

start of contemporary EEG.  

Between the 1930s and 1940s, EEG technology advanced, with improvements in 

electrode design and recording procedures. During this time, researchers made key findings 

about many types of brain waves, including alpha, beta, delta, and theta waves, which are each 

connected with a particular level of consciousness and brain activity. EEG rose to popularity in 

clinical and research settings beginning in the 1950s. It became an indispensable tool for 

identifying neurological conditions like epilepsy and sleep disturbances. Researchers also 

started using EEG to research brain function and map cortical activity during different cognitive 

activities.  

In the 1980s, the introduction of digital EEG equipment transformed the field, allowing 

for more precise and efficient data gathering and analysis. This period also saw breakthroughs 

in EEG electrode technology, with the introduction of smaller, more comfortable electrodes 

suitable for long-term monitoring. EEG continues to evolve in the late twentieth century and 

early twenty-first century, with the introduction of computerised EEG processing techniques 

and the integration of EEG with other neuroimaging modalities such as fMRI (functional 

Magnetic Resonance Imaging) and PET (Positron Emission Tomography). These 

advancements offered up new avenues for investigating brain function and connectivity.  

In the present day, EEG is still an important tool in neuroscience, with applications 

spanning from clinical diagnosis and treatment to cognitive neuroscience and brain-computer 

interfaces. Ongoing research continues to improve EEG techniques and seek new pathways for 

understanding the complex workings of the human brain. (Sutter and Kaplan, 2017). 

The International 10-20 System, sometimes known as the 10-20 system, is a standard 

way for describing and applying scalp electrode locations during an EEG 

(Electroencephalography) examination, as shown in Figure 2.21. This system is extensively 

utilised in both research and clinical settings for EEG recording and is based on the relationship 

between an electrode's placement and the underlying area of the brain. It ensures that EEG 

electrodes are put in the same areas across individuals, resulting in reliable and reproducible 

results.  

The numbers '10' and '20' denote the actual distances between nearby electrodes, which 

are 10% or 20% of the skull's total front-back or right-left distance, respectively. It employs 

certain anatomical markers on the skull, such as the nasion (the bridge of the nose), inion (the 

bump at the rear of the skull), and preauricular points (in front of each ear) to precisely position 

the electrodes (Ives-Deliperi and Butler, 2018). 
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Figure 2.21 – International 10’-20’ System (Martins et al., 2015) 

Electrodes are named based on the area of the brain they are positioned over. Fp 

(Frontopolar), F (Frontal), T (Temporal), C (Central), P (Parietal), O (Occipital) are the key 

letters used. Even numbers (2, 4, 6, 8) are used for electrodes on the right side of the head, and 

odd numbers (1, 3, 5, 7) for those on the left side. The letter 'z' refers to an electrode placed on 

the midline (like Fz, Cz, Pz). 

The recorded electrical activity is displayed as waveforms. Different patterns of brain 

activity produce different waveforms, which can be analyzed for various purposes. For instance, 

certain types of waveforms are associated with specific neurological conditions. Brain waves 

are typically split into four frequency bands: delta, alpha, beta, and gamma. The Delta band has 

the lowest frequency, and the Gamma band has the highest frequency (Zhu et al., 2022).  

Each band has unique characteristics and contains information that represents individual 

nervous system activity. Power spectral analysis is used in frequency band analysis and 

categorization to visualise the EEG power of each frequency band. The brain waves are 

dominant in different state of behaviours: 

 Delta waves are mainly observable in the deep sleep (Yahua and Murat, 2014). 

 Theta waves are observable in the wakeful state, and they can represent the 

consciousness slips towards drowsiness, or when one fall into light sleep (Yahua 

and Murat, 2014). 

 Beta waves indicate the awake state or when person is engaged in active thinking 

and solving complex problems when a person is focused on the task (Makada et 

al., 2016). 
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Figure 2.22 – Classification of brain waves through EEG analysis (Alhudhaif, 2021) 

Figures 2.22 shows a classification of brain waves through EEG analysis. Differences 

in brain mapping of the relatively high-beta wave in the temporal lobe can help determine 

participants' stress. Furthermore, alpha band power fluctuations in the centre-parietal and 

parietal areas have been found to be responsive to MWL, mental effort in attentive stimulus 

processing, and expectancy. Several indices based on beta band power and/or the ratio of beta 

band power to alpha or theta band power have also been studied (de Vries et al., 2017; Ismail 

and Karwowski, 2020). 

EEG offers advantages and limitations when compared to other neuroimaging metrics, 

making it both beneficial and hard in Neuroergonomics applications (Bagheri and Power, 

2020). The primary benefits are:  

 high temporal resolution (Duraisingam et al., 2017), 

 portability for usage in real-world settings (Koyas et al., 2013), and  

 affordability.  

However, EEG approaches have three notable drawbacks:  

 low spatial resolution (Yang et al., 2019), 

 the presence of undesirable nonbrain signals or "artefacts" (Zhu et al., 2017), 

and  

 the long setup time (Jao et al., 2018).  

Despite these limitations, recent advances in EEG technology have resulted in the 

introduction of wireless EEG systems, which allow participants to work without interference 

and use dry electrodes rather than wet systems, reducing setup time (Wang et al., 2016; Arico 

et al., 2016). Furthermore, automatic artefact detection software [34] has been created to 



49 

 

improve signal quality. EEG analysis approaches are divided into four categories: time domain, 

frequency domain, time-frequency domain, and nonlinear. EEG indices are trustworthy 

measures of the brain's spontaneous activity. In this regard, we believe it is crucial to investigate 

studies on EEG indicators in cognitive tasks (Durantin et al., 2014). 

2.8.1. EEG’s Metrics 

EEG is applied to analyze MWL metrics. These metrics are obtained from EEG signals 

and can provide information on a person's mental effort, attention, and cognitive processing. 

Some studies compute a specific workload index using combinations of EEG features (e.g., 

ratios of power in different frequency bands) designed to quantify MWL directly) (Bjegojević 

et al., 2022).    

Coelli et al. (2015) present several methods for calculating this index, including β/(α+θ), 

β/α, and 1/α. Pope et al. (1995) tested several variants of this index and discovered that beta 

power / (alpha power + theta power) was the best predictor of task participation. Mijovic et al. 

(2017) found that a higher ratio of high to low frequency waves (EI = β/(α+θ)) implies increased 

mental engagement in an activity. 

Research investigations examined real-time human brainwave responses using EEG signal 

analysis and pre-processing. In the literature review, various power ratios of brainwaves were 

investigated to determine the mental state of the human in a relaxation (Alpha waves) or 

stress/engagement (Beta waves) phase. This study report showed the β/α ratio to analyse the 

MWL. An increase in the theta/beta ratio is widely used as a measure of cognitive load or mental 

exertion since it reveals the balance of cognitive processing and awareness (Horrey, Wickens, 

2005; Bagheri and Power, 2020). 

Changes in the Alpha/Beta Ratio can also indicate alterations in attentional demand and 

mental stress. Higher alpha activity usually suggests a state of relaxation, less cognitive effort, 

or inactivity in terms of MWL. As mental effort increases, alpha activity decreases, indicating 

greater attention and engagement with the task. 

On the other hand, Beta activity is linked to alertness, focused attention, and active 

cognitive processing. An increase in beta activity can signal higher levels of mental engagement 

and workload. 

The alpha/beta ratio can indicate the balance between calm and active cognitive states. A 

smaller ratio may imply a state of alertness and engagement (greater MWL), whereas a higher 

ratio may indicate relaxation or disengagement. This ratio varies with the level of cognitive 

effort imposed by a task, making it an effective indicator for monitoring variations in MWL 

(Ryu and Myung, 2005). 

In EEG investigations, analysing the alpha/beta ratio can provide insights into how people 

manage varying degrees of cognitive load, particularly in tasks that involve prolonged attention, 

problem solving, or decision-making. It is especially beneficial in areas where understanding 

cognitive engagement and workload is crucial, such as educational research, workplace 

efficiency studies, and human-computer interface design. 

However, it is important to note that individual differences and task environment might 

alter the interpretation of the alpha/beta ratio, as well as other EEG metrics. Furthermore, 

mental effort is a multidimensional concept that may not be well reflected by a single metric. 

As a result, the alpha/beta ratio is frequently utilised in concert with other EEG features and 

cognitive evaluations to provide a more complete picture of MWL. 
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Because the application of EEG in HRI manufacturing activities is still in its early stages, 

the authors proposed that objective measurements should be performed alongside traditional 

subjective and observational ones to gain a better understanding of the operator's cognitive 

state. Although this research defined multiple criteria for the evaluation of HRI task 

performance, the analyses did not highlight the use of EEG in HRI to analyse the operator's 

neural activity during the tasks (Longo, 2016).  

In HRC scenarios, some authors claimed that cobots reduce the operator's MWL. Some 

studies, however, indicated that cobots increased MWL (Mühlemeyer, 2019; Chowdhury et al., 

2020; Borges et al., 2021). However, these studies relied just on subjective assessments 

obtained through surveys or questionnaires. Thus, there is still a need to explore MWL in HRC 

tasks using objective investigations (Storm et al., 2022; Faccio et al., 2022). 

2.9 BRAIN COMPUTER INTERFACE (BCI) 

A Brain-Computer Interface (BCI), also called a Brain-Machine Interface (BMI), is a 

technology that allows the brain to communicate directly with an external device. This interface 

is often implemented with sensors that monitor and interpret brain signals. These neural 

impulses, produced by brain activity, can be converted into commands for operating computers, 

prosthetic limbs, wheelchairs, and other equipment. 

The earliest concepts and experiments related to BCIs emerged in the 1960s and 1970s. 

Researchers like Jacques Vidal explored the possibility of using brain signals to control external 

devices. Vidal coined the term "BCI" in 1973. The development of BCIs gained momentum in 

the 1980s and 1990s, driven by advancements in neurophysiology and computing technology. 

In 1988, researchers at the University of California, Los Angeles (UCLA), led by Dr. P. Michael 

Leahy, demonstrated a BCI system that enabled paralyzed individuals to control a computer 

cursor using brain signals. The 2000s marked significant progress in BCI research and 

development. Researchers began to explore various methods for acquiring brain signals, 

including EEG, fMRI, and invasive techniques like electrocorticography (ECoG) and 

intracortical electrodes. The mid-2000s saw a surge in interest and investment in BCIs, fueled 

by advancements in machine learning, signal processing, and neurotechnology. Researchers 

achieved notable milestones, such as enabling paralyzed individuals to control robotic limbs 

and prosthetic devices using their brain signals (Kubler, 2020). 

In recent years, BCIs have become more accessible and versatile, with applications 

ranging from healthcare and assistive technology to gaming and entertainment. Non-invasive 

BCIs, particularly those based on EEG, have become more portable and affordable, opening up 

new possibilities for widespread adoption. 

BCI technology is continually advancing and has problems, such as increasing accuracy 

and speed of interpretation, as well as making devices more user-friendly and less invasive. 

Despite these challenges, BCIs have great potential for improving human-machine interaction 

and assisting people with various disabilities (Aggarwal and Chungh, 2022). 

Active and passive BCIs (aBCIs or pBCIs) are two different approaches to using brain 

signals to operate a computer or device. The differentiation between them is based on the type 

of brain activity being recorded and how it is used in the interface. 

In an active BCI, the user intentionally modulates their brain activity to transmit orders 

or messages to the computer. This modulation is typically accomplished through specialised 

mental tasks or concentrated efforts. For example, a user may envision moving their left hand 
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to move the cursor left or focusing on a specific visual pattern to select an option. The BCI 

system recognises deliberate changes in brain activity (such as certain EEG patterns) and 

converts them into commands. Active BCIs are commonly employed in applications that need 

direct control, such as moving a prosthetic limb, controlling a wheelchair, or typing on a virtual 

keyboard (Shishkin, 2022). 

Passive BCIs, on the other hand, eliminate the need for the user to actively manage their 

brain activity. Instead, they monitor and adapt to the user's natural brain activity, eliminating 

the need for active manipulation. These technologies are intended to comprehend or interpret 

the user's current state, such as detecting levels of concentration, relaxation, or stress. A passive 

BCI, for example, may modify the lighting in a room based on the user's level of relaxation, or 

it could alert a motorist if they are drowsy. Passive BCIs are frequently employed to improve 

human-computer interface or for monitoring, rather than direct control (Hinss et al., 2023). 

In essence, active BCIs require the user to consciously manipulate their brain activity in 

order to interact with a system, whereas passive BCIs merely monitor the user's normal brain 

states and do not require conscious effort to manage the interface. Both types have distinct 

applications and are useful in various circumstances within the field of neurotechnology. 

In Figure 2.23, an example of real-time acquisition of Signals through Brain Computer 

Interface. 

 

Figure 2.23 – Real-Time Acquisition of Signals through Brain Computer Interface 

(Savkovic et al., 2022) 

 

2.9.1. Other BCI’s Approaches 

Other approaches and classifications within the field of BCI technology are presented. 

These can be categorized based on various aspects such as the method of signal acquisition, the 

nature of the interaction, or the purpose of the BCI. Here are some additional approaches: 

 Reactive BCIs are a subtype of active BCIs. These systems measure the user's 

brain response to external stimuli. For example, a common reactive BCI 

technique is the Steady-State Visually Evoked Potential (SSVEP), which uses 

the brain's response to visual stimuli at specified frequencies to operate an 

interface (Bi et al., 2014). 
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 Hybrid BCIs integrate two or more distinct BCI techniques, or BCI technology 

with non-BCI communication technologies. For example, a hybrid BCI may 

employ both EEG and EMG (electromyography) inputs, or it could integrate 

brain-computer interface with eye-tracking technologies. Often the purpose is to 

improve the system's efficiency, accuracy, or robustness (Fu et al., 2023). 

 Invasive BCIs include implanting electrodes directly into or on the brain's 

surface. These devices can deliver high-resolution information, but they come 

with surgical risks. Non-invasive BCIs, on the other hand, rely on scalp sensors 

(like EEG). They are safer and easier to operate, but they often have lesser signal 

resolution and are more susceptible to noise (Guo et al., 2022). 

 Closed loop BCIs give the user real-time input that can be utilised to make 

system adjustments or for neurofeedback training. The user's brain activity 

influences the system, which in turn influences the user's brain activity, resulting 

in a feedback loop (Xu et al., 2014). 

Some BCIs are intended for extremely particular purposes, such as neurorehabilitation, 

communication for locked-in syndrome, gaming, or even creative expression. These BCIs are 

designed to meet the requirements and limits of their respective use case. Each of these 

approaches addresses unique requirements and obstacles in the field of BCI. The appropriate 

technique is determined by considerations such as the intended use, the user's condition, the 

desired accuracy, and the practicality of applying a specific technology. The field is constantly 

changing, with new techniques and technologies developing as research advances. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



53 

 

3. DESIGN OF EXPERIMENTS 

 An experiment is a methodical approach designed to verify, refute, or confirm the 

validity of a hypothesis. Experiments provide insight into cause-and-effect relationships by 

revealing what happens when a certain factor is modified. Experiments are important to the 

scientific process and are utilised in a variety of fields, including the natural sciences, social 

sciences, psychology, and medicine (Favero and Belfiore, 2006). 

Experiments are classified into three types: laboratory experiments (conducted in 

controlled lab settings), field experiments (conducted in natural settings), and natural 

experiments (in which the experimenter does not manipulate the variable but instead observes 

natural occurrences). 

Key components and characteristics of an experiment include: 

 Hypothesis: a hypothesis is a testable prediction about the relationship between 

two or more variables. It's the starting point of any experiment. 

 Variables: in an experiment, there are typically at least two variables: the 

independent variable (the one that is manipulated or changed) and the dependent 

variable (the one that is measured or observed). There may also be controlled 

variables, which are kept constant to ensure the experiment's validity. 

 Controlled Environment: experiments are often conducted in controlled 

environments where extraneous variables can be minimized. This control allows 

for more accurate determination of cause and effect. 

 Manipulation: the experimenter manipulates the independent variable and 

observes the effect of this manipulation on the dependent variable. This 

manipulation is the core of experimental design. 

 Randomization: random assignment of subjects or units to different conditions 

or treatments is a common technique in experiments. This helps ensure that the 

results are due to the manipulation of the independent variable and not some 

other factor. 

 Replication: experiments should be replicable, meaning that when someone else 

conducts the same experiment under the same conditions, the results should be 

consistent with the original experiment's findings. 

 Observation and Data Collection: careful observation and data collection are 

crucial. This data is analyzed to determine whether the results support or 

contradict the hypothesis. 

 Analysis and Interpretation: after the data is collected, it is analyzed, often using 

statistical methods, to determine the significance of the findings. 

 Conclusions: based on the analysis, conclusions are drawn about the hypothesis. 

These conclusions can lead to a better understanding of the studied phenomenon 

or to further research. 
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 Ethical Considerations: in experiments involving human or animal subjects, 

ethical considerations are critical. This includes obtaining consent, ensuring 

safety, and treating subjects humanely. 

The Design of Experiments (DOE) is a statistical methodology for designing, carrying 

out, analysing, and interpreting controlled tests to determine the factors that may impact a 

specific response or outcome. DOE, invented by Sir Ronald A. Fisher in the early twentieth 

century, is frequently utilised in sectors like as engineering, manufacturing, medicine, and 

agriculture to optimise processes, increase product quality, and shorten development timelines 

(Favero and Belfiore, 2006). 

Key aspects of the DOE include: 

o Objective Definition: the first step in DOE is to clearly define the objectives of 

the experiment. This involves stating the problem, the response variables to be 

studied, and the goals of the experiment (e.g., optimizing a process, comparing 

different treatments). 

o Factor Identification: identify the factors (independent variables) that are 

thought to influence the response variable. These factors might include process 

parameters, environmental conditions, materials used, etc. 

o Level Setting: for each factor, decide on the levels (values) at which it will be 

tested. Levels could be quantitative (e.g., temperature settings) or qualitative 

(e.g., types of material). 

o Selection of Experimental Design: choose an appropriate experimental design 

based on the objectives, number of factors, levels, constraints, and resources. 

Common designs include factorial designs, fractional factorial designs, response 

surface methodology, and Taguchi methods. 

o Randomization: it is the process of randomly assigning the treatments to 

experimental units. This is crucial for reducing bias and the effects of extraneous 

variables. 

o Replication: it involves repeating the experiment multiple times to ensure that 

the results are not due to random chance. Replication improves the reliability 

and accuracy of the results. 

o Blocking: it is a technique used to control for variables that are not of primary 

interest but may affect the response variable. By 'blocking' these variables, their 

impact can be minimized. 

o Conducting the Experiment: run the experiment as per the design, carefully 

controlling and recording the factors and their levels. 

o Data Analysis: to analyze the collected data using statistical methods. This often 

involves the use of the analysis of variance (ANOVA), regression analysis, or 

other statistical tools to determine the effect of the factors on the response 

variable. 

o Interpretation of Results: interpret the results to draw conclusions about the 

relationships between factors and the response. Determine if the findings are 

statistically significant and relevant to the practical context. 
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o Optimization and Recommendations: based on the analysis, make 

recommendations for process optimization, improvement, or further 

experimentation. 

DOE provides a structured approach to experimentation that is more efficient and 

informative than traditional one-factor-at-a-time experiments. An example of a general model 

of a process system considering the controllable and uncontrollable factors influencing the 

system is shown in Figure 3.1 

 

Figure 3.1 – General model of a process or system 

3.1 COMPARATIVE ANALYSIS 

A comparative analysis is a methodological approach that compares several products, 

concepts, entities, or phenomena. This form of analysis is commonly employed in subjects such 

as literature, history, sociology, psychology, economics, and business. The primary purpose of 

a comparative analysis is to find parallels and contrasts between the subjects under study, 

allowing for a more in-depth understanding of each and deriving insights that would not be 

obvious when considering them separately (Janneke et al., 2008). 

Key elements and steps in a comparative analysis include: 

 Selection of Comparison Subjects: the first step is to choose the items or 

concepts to be compared. These could be texts in literature, historical periods, 

policies, economic theories, companies, products, etc. It's crucial that the chosen 

subjects share enough common ground to make the comparison meaningful. 

 Criteria for Comparison: define the specific aspects or criteria on which the 

comparison will be based. These criteria should be relevant and significant to 

the subjects being compared. 

 Data Collection and Research: gather information and data on each subject. This 

step involves thorough research to obtain a comprehensive understanding of 

each item. 
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 Identification of Similarities and Differences: analyze the collected information 

to identify both similarities and differences based on the predefined criteria. This 

is the core of the comparative analysis. 

 Contextual Analysis: understand and analyze the context in which each subject 

operates. This can involve historical, cultural, social, economic, or political 

contexts, depending on comparison. 

 Synthesis and Interpretation: combine the findings to draw conclusions or 

insights. This involves interpreting the significance of the similarities and 

differences and what they reveal about the subjects. 

 Presentation of Findings: organize and present the findings in a structured 

format. This could be in the form of a comparative essay, report, or presentation. 

The presentation typically includes an introduction, a body where comparisons 

are detailed, and a conclusion summarizing the findings and their implications. 

 Critical Analysis: engage in critical thinking to challenge assumptions, explore 

alternative perspectives, and evaluate the implications of the findings. 

A comparative analysis can serve various purposes, such as: 

o To understand each subject more deeply by viewing it in relation to another. 

o To develop arguments or hypotheses by using the comparison as evidence. 

o To make informed decisions or recommendations, especially in business and 

policy contexts. 

Overall, a comparative analysis is a powerful tool for gaining insights, understanding 

relationships, and making informed evaluations and decisions. 

In the following section, the PhD work presents the comparative analysis assessed for 

three laboratory experimental ssettings: the first, in which participants performed an assembly 

task without any intervention in the workstation; the second, in which the participant performed 

the task in collaboration with the cobot, aiding the candidate through the assembly activity; the 

third, in which the participants performed the task in collaboration with the cobot and guided 

by means of P-Y aspects.  

The goal of this investigation is to show how participants' mental effort, efficiency, and 

production change across these three scenarios. Furthermore, the study employed observational 

measurements to compute the productivity index in terms of accurately completed components 

across the three scenarios. EEG sensors are mounted on the candidate to collect quantitative 

data for comparison analysis and to assess the operator's MWL during two different tasks. The 

quantitative and objective EEG analysis results for the MWL provided in Chapter 4 are 

supported by observational measurements of the corrected components used to correlate the 

MWL with production rate. Furthermore, a qualitative analysis employing questionnaires is 

useful for assessing the user experience when working with the robot in a collaborative setting. 

3.2 PARTICIPANT SELECTION 

The number of participants was defined through the sample size criteria adopted through 

the software tool G*Power (Aarts et al., 2014; Kang, 2021).  

G*Power is a statistical power analysis tool that is widely used in a variety of domains, 

including psychology, medical research, and the social and natural sciences. It assists 
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researchers in determining the appropriate sample size for a certain study. This is critical to 

ensuring that the study has enough participants to identify a true effect, assuming one exists. It 

provides many statistical tests, making it useful for a variety of data analyses. It also provides 

graphical alternatives such as power curves, which can be quite useful for visualising the 

relationship between various statistical factors. Finally, G*Power is free to the public and offers 

an easy-to-use interface, making it accessible to those without substantial statistical knowledge. 

In summary, it helps determinate the appropriate sample size and power, thereby increasing the 

efficiency and validity of the research. 

The parameters used for the analysis are: 

 Test Family: this specifies the broad category of the statistical test (e.g., t-tests, 

F-tests, χ²-tests). 

 Statistical Test: within each test family, you select the specific statistical test you 

plan to use (e.g., ANOVA, regression, correlation). 

 Type of Power Analysis: 

o A priori: determines the sample size required to achieve a desired power 

level. 

o Post hoc: calculates the power of an existing study based on the sample size 

and effect size. 

 Effect Size (f) = an estimate of the magnitude of the phenomenon being studied. 

G*Power provides means to calculate effect size based on input data or prior 

research. Generally, acceptable magnitudes of effect size for research studies are 

between 0.2 and 0.6. 

 Error Probability (α): the probability of making a Type I error, which is rejecting 

the null hypothesis when it is actually true (H≠H0). Commonly set at 0.05. 

 Power (1 - β): the probability of correctly rejecting the null hypothesis when it 

is false (i.e., the study's ability to detect an effect if there is one). Typically, 

researchers aim for 80% power (0.80). 

 Number of Groups or Measurements: relevant in designs involving multiple 

groups or repeated measurements. 

 Correlations and Non-sphericity Correction (ε): used in more complex designs 

like Analysis of Variance with repeated measures (ANOVA RM), where 

correlations among repeated measures and the violation of sphericity assumption 

are considered. 

The test family selected is F-test which is a type of statistical test that is used to compare 

the variances of two or more groups to see if they are significantly different from each other. In 

ANOVA, the F-test is used to determine whether there are any statistically significant 

differences between the means of three or more independent groups. 

Regarding the type of statistical test, ANOVA repeated measures (ANOVA RM) within 

factors was deployed. ANOVA RM with repeated measures within factors is a statistical 

method used to analyze data where the same subjects are subjected to multiple conditions or 

measured at multiple time points. This type of ANOVA is particularly common in experimental 



58 

 

designs where the same group of participants is exposed to all levels of the independent variable 

(Miller et al., 2022). 

The type of power analysis is a priori. 

In this PhD work project, the number of measures analysed is equivalent to the number 

of observation periods for each scenario constructed. The trials include three situations 

(standard, collaborative, and collaborative guided), each with three observations.  

Thus, the suitable number of participants for the comparative analysis was assessed 

through ANOVA RM analysis within factors in the G*Power tool, with these inputs: 

 Effect size f = 0.4 – moderate magnitude.  

 Error Probability α = 0.05. 

 Power β = 0.8. 

 number of groups = 1. 

 number of measurements = 9 (Number of periods observed during the task x 

Number of conditions). 

The Figure 3.2 shows the suitable total sample size for the analysis is 7. 

 

Figure 3.2 – G*Power analysis results 
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The study involved 10 male right-handed university students, with a mean age of 23.3 

± 3.3 years (Table 3.1). Before completing an authorization document established by the 

administration of the Faculty of Engineering at the University of Kragujevac in Serbia, all 

participants were informed of the task procedure and objectives. The average body weight was 

88.5 ± 16.4 kg, and the average height was 184.2 ± 5.8 cm. None of the subjects had previous 

experience in the assembly area or with the robot. The participants were not under the influence 

of any drugs that could interfere with EEG. Moreover, they were told not to drink any alcoholic 

drink the day before the tests, like not to drink coffee for at least three hours before the study. 

They assured that they had slept well the night before the test. All subjects had normal or 

corrected-to-normal vision.  

Table 3.1 – Characteristics of the participants 

 
Candidate Number Age  Body Weight (Kg) Height (cm) 

1 26 94 188 
2 24 105 190 

3 26 80 188 

4 23 78 177 

5 23 95 185 
6 20 100 180 
7 22 84 190 
8 22 83 178 
9 24 78 182 

10 23 75 180 
 

3.3 EXPERIMENTAL DESIGN 

The laboratory setting represents a realistic replication of industrial assembly workplace 

ranging from simple to complicated interactions between people and cobots. The Figure 3.3 

shows the workplace where participants carried out the experiments.  

 

Figure 3.3 – Set up of the Workplace Environment 
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In the design of the laboratory industrial assembly workstation, particular consideration 

was paid to the “golden zone area” where operators perform the tasks handling materials and 

components. This area allows workers to attain the best efficiency and output, reducing 

movements of the upper-limb part of the body during the activity of reaching components by 

arms. The golden zone guidelines promote workplace organization while lowering muscle 

effort and the incidence of work-related musculoskeletal disorders (WMSD). Because the 

golden zone is unique to each worker, the workstation ensures that the workspace and 

arrangement of supplies, components, and tool placements may be changed to the individual 

demands (Sanders and McCormick, 1993). 

In addition, the developed workstation is adjustable in height and tailored to the 

anthropological traits of the participants. After reviewing scientific research papers, it is 

possible to conclude that the best alternative for workers is to execute tasks on flexible 

workstations with adjustable heights. Also, the industrial work chair is height-adjustable, 

composed of durable materials, and characterized by stability when altering the participants' 

weight (Wilks et al., 2006). 

The working area is customized with innovative technologies to properly imitate the 

complicated conditions seen in a natural work environment and to allow for improved testing 

of participants' behavior during manual assembly jobs. This workstation includes an industrial 

computer that monitors and controls the performance of different job tasks, processes 

monitorization, and communicates with the operator via HMI devices. A touchscreen PC is 

linked to the system for task definition and stimulus delivery. 

Beyond that, careful consideration is taken with lighting. Lighting is an essential 

component in the ergonomic design of an assembly workstation. It is critical to give a good 

light source to avoid straining their eyes when completing work tasks. Individual reflectors that 

create overlaid solid shadows can induce eye strain, resulting in weariness and a loss of 

concentration. Homogeneous LED lighting was set up on the new industrial lean workstation 

since it produces only gentle shadows, which are easier on the eyes. There is also an audio 5.0 

system to replicate the sounds of the industrial area (Stanton et al., 2012). The designed 

workstation represents the laboratory infrastructure for conducting neuroergonomic 

experiments and studying the behavior of operators at the workplace, as shown in Figure 3.4.  
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Figure 3.4 – Conceptualization of the three different scenarios 

The idea is to lower the level of mental and physical workload during the activity 

performed by the participants. Based on workstation construction and integrated elements, three 

basic scenarios could be performed for purposes of workers behavior comparative analyses: 

 Standard work - manual assembly ativities are completed without any specific 

intervention or enhancement at the workplace. Work is done on the workstation 

"as is" with no intervention from other systems. 

 Collaborative work - participants complete work activities collaborating with a 

cobot, which performs repetitive, uncomplicated tasks that do not involve 

thinking or decision-making. 

 Collaborative Guided work - participants complete the identical labour activities 

as in the second scenario, but with the addition of the poka-yoke system. The 

poka-yoke system plays a function in directing operators through the repeated 

process of assembling parts and components from operation to operation, 

generating the start of each future phase in a predetermined sequence of steps 

and thereby preventing human errors. 

The three experimental settings are shown in the figures below: I) standard scenario 

(SS) - Figure 3.5a - in which the participant performed the task without any assistance (the 

robot) in the workplace; II) collaborative scenario (CS) - Figure 3.5b - in which the participant 

performed the task engaging with the robot in the workplace; III) collaborative guided scenario 

(CGS) - Figure 3.6a - in which the participant performed the task collaborating with the robot 

and was guided all over the task through labels attached to the component defined with with P-

Y principles – Figure 3.6b 



62 

 

  

(a) (b) 

Figure 3.5 – (a) Standard Scenario (SS). (b) Collaborative Scenario (CS) 

  

(a) (b) 

Figure 3.6 – (a) Collaborative Guided Scenario (GCS). (b) Particularity of the third 

scenario: the presence of P-Y principles through number labels 

In total, the number of tests for each participant is 9 (N_tests = N_participants x 

N_scenarios = 9). 

Each test lasted 90 minutes. The total number of components required to accomplish for 

each scenario was 75 (N_components). The distribution of the components was random. 

The scenarios took place throughout the year, with a minimum timeframe of four 

months. The reason was to avoid recall bias when comparing the cognitive burden in the three 

scenarios (Xiao-ming & Jie-fang, 2009). as illustrated in Figure 2.17 through the Ebbingaus 

curve. 

The participants accomplished a replication of an industrial product that is an abstraction 

of the connection plate which is composed of a metal base made of sheet steel with built-in 

threaded elements and a transparent acrylic cover connected by an aluminium hinge (three 

materials combined). For educative reasons, the prototype is lightweight, has no sharp edges, 

and is made of plastic (see Figure 3.7a). The designed job reminded wire-harnessing operations 

performed in manufacturing workplaces (Figure 3.7b). 
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(a) (b) 

Figure 3.7 – (a) Assembly components used for the laboratory experiments. (b) 

Components in real case scenarios 

This task, which is similar to wire-harness assembly activities, was chosen due to a 

limited amount of research studies on the neuroergonomic analysis of these activities when 

supportive technology, such as robots, are used. These harnesses are widely utilised in several 

kinds of industries, including car, aircraft, electronics, and industrial machinery. The 

assembling procedure is thorough, necessitating accuracy and attention to detail. These 

activities necessitate a combination of manual dexterity, attention to detail, and the ability to 

understand complex wiring diagrams. Some components of wire harness installation might 

become repetitious, resulting in mental fatigue and decreased attention over time. This 

monotony can actually increase the cognitive work needed to maintain constant performance. 

Automation has been used in some elements of wire harness assembly, although much of the 

labour is still done manually due to the complicated and customised nature of many wire 

harnesses (Navas Reascos et al., 2022). 

Following their arrival, participants got familiar with the materials and surroundings. 

Each candidate received clear instructions on how to complete the assessments, and as well as 

an explanation of the activity's aim. Then they were fitted with the EEG cap and allowed to sit 

in the adjustable ergonomic work chair. The steps were same in all situations. Initially, each 

applicant was trained for 15 minutes prior to the start of the activity in all the scenarios, in 

accordance with the experiment procedure. To avoid memory bias, the participant did not 

engage with the robot during the collaborative scenario training session. Following the training 

phase, in all circumstances, the individual began the tests after resting for 5 minutes as a 

baseline.  

The temperature was kept constant at 23 ± 1.5 °C throughout the studies. The tests were 

conducted in the morning, beginning at 9 a.m.  

To reduce the possibility of electrical interference, the computer linked to the EEG 

device via Bluetooth was set to the maximum distance. Smartphones and other electronic 

devices were kept outside of the workstation. Moreover, no one was permitted to enter the 

laboratory during the experiments. To ensure that the results were unaffected, these criteria 

were same for the three scenarios. The assembly tasks accomplished by the participants 

consisted of different steps performed in the three scenarios:  

1. Take the plate placed on the right side of the participant and correctly place it in 

front of the participant on the work desk of the workstation. In the first scenario, 

the plates are grouped in groups and put on the operator's right side of the manual 
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assembly desk. In the other circumstances, the cobot delivered the plate to the 

operator on the right side, then entered the manual assembly area and waited for 

the participant to finish the work. The cobot arranged the plate for the participant 

to take. Throughout this phase, ergonomic concepts were employed to allow 

participants to grip the component without overextending their arms (Stanton et 

al., 2012). 

2. Take seven wires from the container, one by one, set in the assembly area, and 

connect them to the plates. The connections were illustrated by a graphic from 

the mounted PC touchscreen. The participant did not know which order scheme 

would display on the monitor. To eliminate bias in the results, the connection 

between the schemes was randomised. In the first scenario, the participant 

accomplished the task without any external assistance in the assembly area. As 

opposed to in the collaborative scenario, as the operator built the scheme, the 

robot returned to pick up and transport the other scheme to the location where 

the participant would retrieve it. Moreover, in the collaborative guided scenario, 

the participant was instructed to complete the task using the labels associated 

with the schemes in order to avoid errors. 

3. Set the plate on the slide located to the left side after having performed the task 

and touch the PC touchscreen to progress to the next scheme. 

 

3.4 COLLABORATIVE SCENARIO 

In the collaborative scenario, the industrial cobot used for the tests was the MELFA 

ASSISTANT from Mitsubishi Electric, shown in Figure 3.8 (Mitsubischi Electric).  

 

Figure 3.8 – Mitsubishi MELFA ASSISTA cobot 

The Mitsubishi MELFA ASSISTA is a cobot built to work alongside humans in various 

industrial and manufacturing settings. The MELFA ASSISTA is built to ensure safe operation 

around humans. It typically includes safety features such as collision detection and compliant 

movement, which allow it to stop or adjust its path when it encounters an obstacle, including a 

human co-worker. This makes it suitable for shared workspaces without the need for traditional 

safety barriers. These cobots have user-friendly programming interfaces, and they may 

occasionally be controlled and programmed using touch panels or handheld training devices. 

This makes them accessible to operators who need substantial robotic programming skills. 

Furthermore, MELFA ASSISTA cobots are often developed for a variety of tasks, including 
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assembly, inspection, material handling, and packaging. Their versatility makes them 

appropriate for a wide range of operations in a number of industrial settings. Despite being 

collaborative and user-friendly, these cobots maintain the precision and efficiency that 

Mitsubishi Electric's industrial robots are known for. They can complete assignments with high 

accuracy and consistency in quality. 

The MELFA ASSISTA's design often focuses on space-saving and ergonomic 

characteristics, making it easy to integrate into existing workflows and places. These cobots 

can frequently be combined with various automation systems and technologies, increasing their 

functionality and versatility in a networked industrial setting.  

The MELFA ASSISTA's payload (the weight the robot can carry) and reach (the 

distance the robot can stretch) are intended to match the requirements of typical collaborative 

applications. Specific models will have varying specs in this regard. 

In connection with safety, integrated safety elements include a robot controller with 

safety-rated motion supervision, a sensor system to monitor the collaborative workspace, and 

grippers with pressure control (Figure 3.9). The position controller ensures that the current 

position always matches the set point of the commanded motion with the smallest feasible 

difference. Actuators control the robot's position in order to restore its motion following a 

collision or departure. The impedance control measures the force between the manipulator and 

the human. The control system supervises the robot's actions and establishes limits to prevent 

collisions in the environment. This component can manage position, motion, force, and 

dynamic effects. (Caiazzo et al., 2022). 

 

 

Figure 3.9 – Mitsubishi MELFA ASSISTA Cobot Architecture 

Authors used RT Toolbox3 for management of a cobot. RT Toolbox3 is a robot 

programming and simulation software developed by Mitsubishi Electric. It's designed for use 

with Mitsubishi's range of industrial robots. This software provides a comprehensive suite of 

tools to aid in the programming, control, and simulation of robotic systems for various 

applications in manufacturing and other industrial processes. This PC software supports 

everything from system startup to debugging, simulation, maintenance, and operation (Wang 

and Chang, 2020). RT Toolbox3 allows users to create, edit, and manage robot programs. It 

supports a range of programming languages and offers a user-friendly interface for coding and 

command input. One of the standout features of RT Toolbox3 is its simulation capability. Users 

can simulate robot movements and operations in a virtual 3D environment. This helps in 

planning, visualizing, and optimizing robot tasks before actual deployment. The software 

includes tools for motion planning and trajectory optimization, ensuring that robot movements 
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are efficient, smooth, and safe. It provides diagnostic tools for troubleshooting and debugging 

robot programs, helping users to identify and resolve issues more efficiently. RT Toolbox3 can 

integrate with CAD (Computer-Aided Design) software, allowing users to import 3D models 

of parts and environments. This integration aids in more accurate and realistic simulation and 

programming. The software usually features a graphical user interface that is intuitive and easy 

to navigate, making it accessible for users with varying levels of programming experience. RT 

Toolbox3 supports teaching methods where users can guide the robot to desired positions and 

record these positions to create a program. It also allows playback of these movements for 

verification and refinement. It includes safety and compliance tools to ensure that robot 

operations adhere to industry standards and safety regulations. The software often allows 

customization to meet specific application needs and is flexible enough to handle a wide range 

of robotic applications, from simple pick-and-place tasks to complex assembly operations. 

Finally, RT Toolbox3 can communicate with other industrial systems and devices, facilitating 

integration into broader automation systems. 

The design and implementation of cobots in workplaces are becoming increasingly 

important due to the myriad benefits they offer in terms of efficiency, safety, and flexibility. 

Cobots can foster a more collaborative work environment where humans and machines leverage 

each other's strengths. This synergy can lead to innovative processes and products. The 

thoughtful design and implementation of cobots are critical in modern workplaces to ensure 

safety, improve efficiency, and maintain flexibility, all of which are key drivers in the current 

rapidly evolving business landscape. 

The strategic location of the robotic workstation was a crucial factor in the collaborative 

scenario's design. It was critical to set up the collaborative setting, considering the presence of 

the participant and other systems in the workstation, respecting the concepts of the comparative 

analysis. (Arai et al., 2010).  

The robot's speed was critical for determining HRC activity because the participant 

worked concurrently and near the cobot. In this manner, the robot station was positioned 1000 

millimetres from the operator. The cobot speed chosen for an HRC work was 250 (mm/s), based 

on the literature review and the cobot's technological attributes for an interactive activity.  

A further significant aspect of the design was selecting the appropriate end-effector to 

grip the components and allow the robot to interact with its surroundings and the operator in 

the workplace. The design and functionality of an end-effector are largely determined by the 

robot's intended application.  

 

Figure 3.10 – VGC10 Electrical Vacuum Gripper 
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The robot end-effector deployed to carry the pieces was the VGC10 Electrical Vacuum 

Gripper, suitable for HRI activities (VGC10 Electric Vacuum Gripper), as shown in Figure 

3.10. 

Unlike traditional vacuum grippers that rely on compressed air, an electrical vacuum 

gripper like the VGC10 is powered electrically. This often makes it more energy-efficient and 

easier to integrate into various systems, as it does not require pneumatic infrastructure. These 

grippers are usually designed to be compact and lightweight, making them ideal for use with 

smaller industrial robots or cobots. Their size and weight allow them to be easily mounted on 

different types of robotic arms.  

An important feature of electrical vacuum grippers is the ability to adjust the suction 

force. This makes them versatile for handling a wide range of objects, from very delicate to 

relatively heavy items. Many of these grippers are designed for easy integration with various 

robot brands and models, offering plug-and-play compatibility. 

 The gripper applied a pneumatic inner force to identify whether it was holding the item 

or not. It was selected to pick and position light components with a thin coating. The gripper 

was also customisable, making it easier for the robot and the human to work together during 

the gripping phase. In this case study, to pick and carry the light component accomplished by 

the participant, the limit force set to allow the robot to move again to the initial position was 

defined as 20 kPa.  

 

Figure 3.11 – Sequential collaboration: cobot and gripper action logic (Caiazzo et 

al., 2023) 

Furthermore, it was designed a logic to define a suitable for human-robot collaborative 

activity, as shown in Figure 3.11: only once the operator gripped the piece did the robot 
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"understand" to return and pick the other piece. Based on the literature review, the interaction 

is a sequential partnership (Hjorth and Chrysostomou, 2022).  

3.4.1. Risk Assessment for the Implementation of the Cobot 

Mechanical risk evaluation for machinery is a systematic procedure aiming at 

identifying, analysing, and managing the potential sources of damage, or hazards, associated 

with machine operation, maintenance, and workplace interactions. This procedure is critical for 

guaranteeing worker safety and health and is an essential component of occupational safety and 

health management programmes. The purpose is to identify potential hazards that machines 

may cause and then develop methods to minimise or eliminate these risks (Kozłowski et al., 

2023). 

A thorough mechanical risk assessment is critical for preventing accidents and injuries, 

ensuring compliance with legal requirements, and fostering a safety culture in workplaces 

where machinery is employed. The Machinery Directive (2006/42/EC) specifies the legal 

criteria for the design and construction of machinery to ensure safety.  

The first step involves identifying all the potential hazards associated with the 

machinery. This includes moving parts that can cause injuries, points of operation, hot surfaces, 

electrical hazards, and any other aspect of the machinery that could pose a risk to operators or 

others in the vicinity. 

Once hazards are identified, the following stage is to assess the risk associated with each 

one. This includes the possibility of the hazard causing an injury or accident, as well as the 

severity of the outcome. Factors such as the frequency of hazard exposure, the number of 

persons affected, and existing management methods are considered. 

The Risk Evaluation process entails comparing the projected levels of risk to preset risk 

criteria to determine whether the risk is acceptable. Prioritising risks by severity and likelihood 

ensures that the most significant issues are addressed first. 

Based on the risk evaluation, appropriate control measures are identified and 

implemented to eliminate the hazard, or if that's not possible, to reduce the risk to an acceptable 

level. The hierarchy of control measures typically starts with eliminating the hazard, followed 

by substitution with a less hazardous process or material, engineering controls to prevent access 

to hazards, administrative controls to limit exposure, and personal protective equipment (PPE) 

as a last resort (Kozłowski et al., 2023). 

All findings, decisions, and actions taken during the risk assessment process should be 

thoroughly documented. This documentation serves as a record of the risk management efforts 

and can be used for future reference, training, and compliance purposes. 

Risk assessments should be reviewed and updated regularly or when there are changes 

in machinery, processes, or working conditions that could affect the risk profile. Continuous 

monitoring is essential to ensure that control measures remain effective and to identify any new 

hazards. 

In HRC applications, the risk matrix for risk for mechanical risk assessment is deployed 

to evaluate the level of safety of the collaborative scenario (Gualtieri et al., 2021).  

Severity (Se) is the potential impact of a risk event that should occur. Severity is usually 

categorized into levels, such as: 
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1. Minor (e.g., minor injuries requiring first aid like scratches or bruises)  

2. Moderate (e.g., injuries requiring medical treatment but not resulting in long-

term disability) 

3. Major (e.g., serious injuries leading to long-term disability) 

4. Catastrophic (e.g., death or multiple serious injuries) 

The Risk Class Index (CI) is estimated through the formula: 

𝐶𝐼 =  𝐹𝑟 + 𝐹𝑟 + 𝐴𝑣  (3) 

Where: 

 Fr (Frequency): it evaluates the average interval between frequency of risk exposure 

and its duration and can assume an integer value between two and six. Indeed: 

o 2 - interval between exposure is more than a year. 

o 3 - interval between exposure is less or equal than a year but more than two 

weeks. 

o 4 - interval between exposure is less or equal than two weeks but more than 

a day. 

o 5 - interval between exposure less or equal than a day but more than an hour. 

Where the duration is shorter than 10 minutes, the above values may be 

decreased to the next level. 

o 6 - interval between exposure is less or equal than an hour. This value must 

not be decreased at any time. 

 Pr (Probabilty): it is the probability of occurrence of a hazardous event and can 

assume an integer value between one and five. Here: 

o 1 – Negligible: when the possibility of human herror never occurs. 

o 2 – Rarely: Human error is unlikely. 

o 3 – Possible: Human error is possible. 

o 4 – Likely: Human error is likely. 

o 5 – Very high: human error behavior is such that the likelihood of error is very 

high. 

 Av (Avoidance): it is the possibility of avoiding or limiting harm and can assume 

an integer value equal to one, three or five. Here: 

o 1 – Likely: it is likely that the contact with moving parts behind an interlocked 

guard will be avoided in most cases. 

o 3 – Possible: it is possible to avoid an entanglement hazard where the speed is 

slow. 

o 5 – Impossible: it is possible to avoid an entanglement hazard because a part of 

machine becomes live because of an electrical insulation. 

The matrix is divided into three areas: 

 The red area: protective measures must be implemented immediately to reduce risk; 

 The yellow area: protective measures are recommended to be implemented to 

further reduce the risk. 

 The green area: the risk is considered adequately reduced. 

In this regard, considering the collaborative scenario implemented, the suitable 

values to mark in the risk matrix are: 
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Se = 1: as the robot speed is set at collaborative mode (250 mm/s) and the component 

is lightweight and has no sharp edges, the participant might only have scratches during 

the interaction with the machine. 

Fr = 6: the interaction with the robot happens less or equal to 90 seconds. 

Pr = 2: the human error would be unlikely. The participant is sat during the whole 

activity, at a suitable distance from the cobot to avoid the contact during its movement. 

It could happen that the piece could drop from the cobot’s gripper. However, since the 

distance between the cobot and the participant is set at a safe value, the probability 

would be very low. Also, the participant could grasp the component before the end-

effector enters the manual assembly task (or golden zone). In this case, through the 

embedded safety sensors of the robot, there would be a warn signal noise that the piece 

was removed before the movement of the robot ends. However, the logic of the robot 

understands this situation and refer that the robot could undergo the next task, returing 

to its initial position to grasp the next piece. This situation never happened during the 

experiments. However, we assign a value of 2 as an unlikely possibility of human error. 

Av = 1: there are no barriers between the human and the operator, though the 

avoidance of collision is ensured due to the fact the the participant is in the same position 

for the whole task and the cobot movement, at low speed and at a reasonable distance 

determined through safety guidelines, does not interact with the body of the participant. 

Thus CI = 6 + 2 + 1 = 9. The risk is adequately reduced, as shown in Figure 3.12. 

 

Figure 3.12 – Risk assessment matrix for the implementation of the cobot in the 

workplace (Barbiero, 2019) 

3.5 COLLABORATIVE GUIDED SCENARIO  

The purpose of the third scenario is to analyze the MWL of participants through the EEG 

cap while assembling the components in collaboration with the cobot and through the hints 

defined with Lean Principles aspects (P-Y) to reduce the human-error.  
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Figure 3.13 – Collaborative Guided Scenario Set up 

 

Figure 3.14 – Quality Inspection Phase 

In this scenario, the assembly task is supported by an automized quality inspection phase 

in which a second robot carries the component in the Quality Control area to inspect weather 

the labels printed on the component are correctly placed or not, as shown in Figure 3.13 and 

Figure 3.14. 
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Thus, the setup of the Collaborative Guided Scenario (CGS) involved the 

implementation of other modules in the modular assembly workplace set up for the 

laboratory experiments. Further modules involved are: 

 the Mitsubishi Electric industrial robot RV-2FRL-D-S25: this module is added 

next to the Melfa Assista cobot to carry the component in the Quality Check 

Phase before the assembly start is carried out by the participant. The RV-2FRL-

D-S25 is a type of industrial robot known as a "6-axis articulated robot." This 

means it has six degrees of freedom, allowing it to move in multiple directions 

and angles, like the flexibility of a human arm. The payload capacity of this 

robot is typically specified as 2 kg. 

 

 the Inkjet printer domino A100: this module is added as end-effector of the 

Mitsubishi Electric industrial robot RV-2FRL-D-S25 to print the Poka-Yoke 

labels on the piece to guide the operator during the activity. It uses inkjet 

technology to spray droplets of ink onto the component. 

 SICK Inspector 611: this module is added to the workplace with the function to 

support the Quality Check Phase of the labels printed by the Inkjet printer 

domino A100 through the Mitsubishi Electric industrial robot RV-2FRL-D-

S25. The inspection is visible on the touch-screen device mounted on the robotic 

work desk. 
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4. NEUROERGONOMIC ASSESSMENT AND EEG PRE-PROCESSING 

To assess the MWL, both objective and subjective measurements were deployed. 

Mobile devices are selected based on the tasks to be accomplished, as well as the features and 

specifications of the workplace. In general, physiological sensors should be deployed to 

accurately monitor the workers' circumstances. Given their sensitivity to physical activity, not 

all of them may be selected optimally.  

Figure 4.1 shows the EEG cap mounted on the head of participants deployed in the 

collection and analysis of EEG data for our laboratory experiments. The sensors consisted of 

sintered Ag/AgCl. 

 

Figure 4.1 – Electroencephalogram (EEG) gel-based cap (mbrainTrain) 

The data was acquired using electrodes put on the individuals' scalps. Each electrode 

measured the voltage generated by neural activity in the brain where it was inserted. The EEG 

data were recorded using the SMARTING wireless EEG equipment. (Fraboni et al., 2021).  

The SMARTING wireless EEG system is a technology designed for capturing 

brainwave data without the restrictions of traditional, wired EEG systems. This system offers a 

more comfortable and flexible way to record EEG data, making it suitable for various research 

and clinical applications. One of the primary features of SMARTING is its wireless capability, 

which allows for greater mobility for the user. The absence of wires connecting the EEG cap to 

a recording device makes it easier to use in a range of settings, including while the subject is 

moving. SMARTING is designed to transmit EEG data in real-time, allowing researchers to 

monitor brain activity as it happens without significant delays. The system's portability makes 

it suitable for field studies, ambulatory assessments, or studies involving movement, such as 

walking or performing physical tasks. Despite being wireless, these systems typically maintain 

a high standard of data quality, with minimal artifacts from movement or interference, which is 

crucial for reliable EEG analysis (mBrainTrain). 
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Figure 4.2 – International 10-20 System – view from the software 

The lightweight EEG amplifier (85 × 51 × 12 mm, 60 g) was securely attached to a 24-

channel electrode cap. The SMARTING interacted with the recording computer using 

Bluetooth. Figure 4.2 illustrates the location of 24 electordes on the software, positioned 

according to the 10-20 System (Ives-Deliperi and Butler, 2018):  

 

 frontal (Fp1, Fp2, AFz, F3, F7, Fz, F4, F8). 

 central (Cz, CPz, C3, and C4).  

 temporal (T7, T8). 

 parietal (CPz, Pz, P3, P4, P7, P8). 

 occipital (O1 and O2). 

 midbrain (M1 and M2). 

 

According to the experimental procedure, the required electrode impedance should be 

below 5 kΩ, which was also specified by the SMARTING software. A reference approach was 

established for the montage electrode system cap.  

Data was obtained using the software SMARTING STREAMER 3.4.3, which enabled 

a computer to connect with the devices. EEG metrics were evaluated by analysing the neural 

brainwave pawer ratio (β/α) as markers of stress/engagement or relaxation during the 

assessments. 

The task and participant’s activity and EEG data stream were synchronized with 

Streamer software (version 3.4.3, mBrainTrain) via the Lab Streaming Layer (Kothe et al., 

2024).  

The Lab Streaming Layer (LSL) is a system developed to capture and distribute time 

series data in real time during research experiments. It is especially important in neuroscience 

and psychophysiology research, but it can be used in any domain that demands exact 

synchronisation of high-bandwidth data streams, such as EEG, motion capture, and other sensor 

data. LSL is designed for synchronising streaming data from many sources, which is essential 

for investigations that require the integration of various forms of physiological and behavioural 
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data. It can handle high data rates efficiently, which is critical for neuroimaging approaches that 

produce vast amounts of data efficiently. LSL supports various data types and is compatible 

with many different hardware and software systems used in research, making it a versatile tool 

for experimental setups. Nevertheless, data can be processed in real-time, enabling applications 

such as biofeedback, neurofeedback, and real-time data visualization or analysis. Finally, LSL 

is open source, allowing researchers to customize and extend it according to their specific 

project needs. LSL is widely used in research that requires precise timing and integration of 

multiple data streams, and it plays a crucial role in advancing the methodologies in fields that 

rely heavily on complex data collection and analysis. 

In Figure 4.3, an illustration of the design of the modules interconnected in the modular 

assembly workstation designed at the laboratory is shown: the LSL software interconnected the 

other modules to exchange data (EEG data). 

 

Figure 4.3 – Set up of the LSL software with other modules (Savkovic et al., 2022) 

In terms of subjective measurement to analyse the MWL, participants completed the 

NASA TLX at the end of each scenario. The Human Performance Group at NASA's Ames 

Research Centre created the NASA Task Load Index (NASA-TLX), a widely used subjective 

workload assessment instrument. It is intended to generate an overall workload score using a 

weighted average of ratings from six subscales. These subscales represent multiple aspects of 

perceived burden in tasks, making them useful to a wide range of work environments and 

scenarios, including aviation, healthcare, and others. The multidimensional subjective 

assessment assesses the mental, physical, and temporal demands, effort, performance, and 

amount of dissatisfaction that participants faced during the task in both circumstances. 

Participants rate each of these dimensions using a scale. The evaluations are then aggregated, 

typically with varying weights, to generate an overall workload score. This aids in determining 

how difficult a task was from the user's perspective. The lowest point is 1, and the highest is 10 

(Fiorineschi et al., 2020).  
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In addition, at the end of the tests in the collaborative scenario, participants answered 

open questions about their collaborative activity with the cobot, its fluency and motion (whether 

aggressive or not), how safe and comfortable they felt interacting with it, and whether the 

workplace setting was better in the standard or collaborative scenario. 

In terms of performance assessment, a unique checklist was developed to differentiate 

between correct and incorrect components completed by participants to measure the overall 

session's efficiency. 

4.1 EEG PRE-PROCESSING SET-UP 

The EEGLAB 2021.1 toolbox (MATLAB 2021.a) was used for preprocessing and data 

analysis. EEGLAB is a widely used open-source MATLAB toolbox for processing and 

analyzing EEG (electroencephalography) data. It is designed for use by neuroscientists, 

psychologists, and others in the field of brain dynamics research. It EEGLAB offers a graphical 

user interface (GUI) that allows users to easily navigate through various EEG data processing 

steps. EEGLAB supports importing data from various EEG data file formats and allows 

exporting processed data for further analysis or visualization. The toolbox includes functions 

for filtering, artifact removal, re-referencing, and other preprocessing steps necessary for 

cleaning and preparing EEG data for analysis (Delorme and Makeig, 2004).  

 The data were grouped into different frequency bands (Chacon et al., 2021): 

 Delta (between 0.5 and 4 Hz): highlighted in a state of sleeping. 

 Theta (between 4 and 8 Hz); highlighted in REM phase.  

 Alpha (between 8 and 12 Hz): highlighted in an awake state while being 

concentrated and relaxed. 

 Beta (between 13 and 29 Hz): highlighted while being in a state of stress and 

engagement. 

 Gamma (between 25 and 45 Hz): highlighted in a state of processing information 

and making voluntary movements. 

The pre-processing phase of EEG data is a crucial step in EEG analysis, where raw data 

are cleaned and prepared for further analysis. EEG recordings are sensitive to various 

types of noise and artifacts, so pre-processing is essential to ensure the data accurately 

reflects neural activity. The typical steps involved in EEG data pre-processing include 

(Suarez-Revelo et al., 2018): 

 Filtering: 

o High-Pass Filtering: Removes slow drifts in the data, often caused by 

physiological processes like breathing. 

o Low-Pass Filtering: Eliminates high-frequency noise, which can be 

caused by electronic equipment or environmental factors. 

o Band-Pass Filtering: Keeps frequencies within a specific range, often 

used to isolate certain types of brain waves (e.g., alpha, beta, delta, theta 

waves). 

 Artifact Removal: 

o Eye Blink Artifacts: Eye blinks and movements create large artifacts in 

EEG data. Techniques like Independent Component Analysis (ICA) are 

often used to identify and remove these artifacts. 
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o Muscle Artifacts: Muscle movements, especially facial muscles, can also 

produce artifacts. These are typically higher frequency signals and can 

be reduced using filtering and ICA. 

o Electrode Popping: Sudden, large spikes in the EEG signal due to 

electrode movement or bad electrode contact are identified and removed. 

 Re-Referencing: EEG data are usually recorded with respect to a reference 

electrode. Changing this reference (re-referencing) can be useful for 

highlighting certain aspects of the EEG signal. 

Common average referencing or using a linked mastoid reference are popular methods. 

 Downsampling: Reducing the sampling rate of the data (if it’s higher than 

necessary for the analysis) to decrease the data size and computational load. 

 Segmentation: Dividing continuous EEG recordings into shorter epochs or 

segments, often time-locked to specific events (event-related potentials or 

ERPs). 

 Baseline Correction: Adjusting the EEG signal by a baseline value, usually taken 

from a period where no experimental stimulus is presented, to account for 

background brain activity. 

 Normalization: Scaling the EEG data to a certain range or distribution, which 

can be useful for comparing subjects or conditions. 

 Bad Channel Detection and Repair: Identifying and interpolating data from EEG 

electrodes that were not functioning correctly during the recording. 

 Time-Frequency Analysis (if applicable): Transforming the EEG data to analyze 

both time and frequency domains, useful for studying brain oscillations and 

event-related spectral perturbations. 

In this methodology, a sample rate of 250 Hz was utilised. Pre-processing EEG signals 

often entails filtering the signal to remove artefacts such as eye movements, muscle tension, 

and noise. This study evaluated the MWL using the power ratio (β/α). (Ismail and Karkowski, 

2020; Pusica et al., 2024). 

Noise was reduced using a band-pass filter with a frequency range of 1-40 Hz. The 

discovery of poor channels enabled intervention in channels that were not collecting high-

quality signals.  

In this case, because the EEG cap included more channels in different parts of the scalp, 

it was possible to interpolate these channels with those near the scalp's area of interest. Matlab's 

artefact subspace reconstruction (ASR) technique allowed to detect and eliminate artefacts like 

eye movements and muscle strain. Finally, the independent component analysis (ICA) was 

performed to separate the signals into additive and independent components (Kaliraman et al., 

2022).  
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Figure 4.4 – Flowchart of the EEG pre-processing phase (Caiazzo et al., 2023) 

A representation of the steps of the EEG pre-processing phase designed for the tests is 

shown in the flowchart, in Figure 4.4. 

4.1.1. Significance of the Results through Statistical Analysis 

Finally, to define the significance of the results, the data collected were evaluated 

through the statistical analysis.  

In statistical analysis, the p-value, also known as the probability value, measures the 

degree of evidence against a null hypothesis. It is utilised in hypothesis testing to establish the 

statistical significance of an experiment's outcomes (Di Leo and Sardanelli, 2020). 

If the p-value is less than a preset threshold (alpha level, which is often set at 0.05), the 

result is considered statistically significant. This suggests that the observed data would be 

extremely implausible under the null hypothesis, indicating support for the alternative 

hypothesis.  

A small p-value (usually ≤ 0.05) suggests significant evidence against the null 

hypothesis. Therefore, you reject it. A large p-value (> 0.05) suggests weak evidence against 

the null hypothesis. Thus, you are unable to reject it. 

In statistical hypothesis testing, the null hypothesis (H0) is a broad statement or default 

position that there is no relationship between two observable events or no association between 

groups. On the other hand, the alternative hypothesis (H1 or Ha) may be something you desire 

to test or validate. It implies that there is a connection or effect. 

The p-value is determined using statistical methods and represents the likelihood of 

receiving an observed outcome, or one more extreme, assuming that the null hypothesis is true. 

This calculation frequently requires the use of a statistical test, such as a t-test, chi-square test, 

ANOVA, etc. 



79 

 

The p-value should be considered in the context of the study. Other factors, such as the 

study design, sample size, and real-world significance, should also be considered. 

4.2 MENTAL WORKLOAD RESULTS THROUGH THE EEG ANALYSIS 

The MWL index of the participants in the three setting conditions was evaluated in three 

consecutive parts of the tests, each one of 30 minutes, and is presented in the Figure 4.5 below, 

from the Table 4.1, Table 4.2, and Table 4.3: 

Table 4.1: Mental Workload Index (MWL) - Standard Scenario (SS). 

Candidate Number 1st parts SS    2nd part SS 3rd part SS 

1 0.772474606 0.692860351 0.704460397 
2 1.041756482 0.99235386 0.975106769 

3 1.009762146 1.021124855 1.028503097 

4 1.281920772 1.364712446 1.369240439 

5 0.735837045 0.680604662 0.656824445 
6 1.164515278 1.128745483 1.13843409 
7 1.060649624 1.002879283 0.926139392 
8 1.009762146 1.021124855 1.028503097 
9 1.033699144 1.052905738 1.026548916 

10 1.164515278 1.128745483 1.13843409 
Table 4.2.: Mental Workload Index (MWL) - Collaborative Scenario (with robot - CS). 

Candidate Number 1st part CS    2nd part CS 3rd part CS 

1 0.769286117 0.683612302 0.613492 
2 0.693132066 0.677324776 0.5973241 

3 1.061111957 1.045100041 1.036104363 

4 1.289545341 1.259335851 1.131426059 

5 0.47350241 0.408151724 0.399456098 
6 1.213856242 1.163920243 1.15775252 
7 0.851468278 0.83068285 0.794087422 
8 0.961111957 0.845100041 0.836104363 
9 0.930194153 0.922699171 0.918183756 

10 1.013856242 1.003920243 0.95775252 
Table 4.3.: Mental Workload Index (MWL) - Collaborative Guided Scenario (with robot and 

P-Y design – CGS. 

Candidate Number 1st part CGS    2nd part CGS 3rd part CGS 

1 0.46818577 0.449082462 0.414646928 
2 0.495741994 0.483022635 0.451628618 

3 0.86263258 0.806475383 0.78148261 

4 0.875375896 0.765949765 0.759658133 

5 0.29292757 0.279212989 0.257896826 
6 0.96223297 0.862404235 0.821719726 
7 0.718651768 0.654736041 0.631027896 
8 0.807322625 0.781813941 0.734006918 
9 0.685569252 0.680237227 0.630932719 

10 0.706210034 0.675140146 0.647749013 
 



80 

 

 

Figure 4.5 – Mental Workload (Y-axis) over the participants (X-axis), in three 

consecutive parts (30 minutes each) analysed in the standard (SS – highlighted in dashes), 

collaborative scenario (CS – highlighted in scatters), and collaborative guided scenario (CGS 

– highlighted in dashes) 

Figure 4.5 shows that in the SS, the MWL fell somewhat during the exercise. Subjects 

4 and 6 showed an increase in power ratio (β/α) during the second and third part of the test. 

ANOVA RM - α = 0.05 - yielded P-value = 0.194, F = 2.459, and F_crit = 3.633. In the normal 

case, the MWL between the three test portions is not substantially different (P-Value > α), hence 

the null hypothesis cannot be rejected (H = H0).  

In contrast, in the CS, all participants' MWL dropped along the activity. The ANOVA 

RM analysis (α = 0.05) yielded a P-value of 0.00005, F value of 19.32, and F_crit of 3.633. The 

collaborative scenario resulted in a substantial drop (P-Value < α) in MWL across all three tests, 

rejecting the null hypothesis (H≠H0).   

Finally, in the collaborative guided scenario (CGS), the MWL of the participants is the 

lowest compared with the other scenarios. From the ANOVA RM analysis (α = 0.05), P-Value 

= 0.00003, F = 15.42, F_crit = 2.633. In the collaborative guided scenario, the MWL 

significantly decreased (P-Value < α) along the three parts of the tests observed and the null 

hypothesis is rejected (H≠H0).   

Considering the variation between the overall parts of the two sessions, the MWL 

difference (Diff) is defined in Figure 4.6, from Tables 4.4, Table 4.5, and Table 4.6. 
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Table 4.4.: Mental Workload Index (MWL) difference - Standard Scenario (SS). 

Candidate Number Diff 2nd-1st parts SS Diff 3rd-2nd parts SS Diff 3rd-1st parts SS 

1 -0.079614255 0.011600045 -0.06801421 
2 -0.049402622 -0.017247092 -0.066649714 

3 0.011362709 0.007378243 0.018740952 

4 0.082791674 0.004527993 0.087319667 

5 -0.055232382 -0.023780217 -0.079012599 
6 -0.035769794 0.009688607 -0.026081188 
7 -0.057770342 -0.07673989 -0.134510232 
8 0.011362709 0.007378243 0.018740952 
9 0.019206594 -0.026356822 -0.007150228 

10 -0.035769794 0.009688607 -0.026081188 
 

Table 4.5.: Mental Workload Index (MWL) difference - Collaborative Scenario (with robot - 

CS). 

Candidate Number Diff 2nd-1st parts CS Diff 3rd-2nd parts CS Diff 3rd-1st parts CS 

1 -0.085673815 -0.070120302 -0.155794117 
2 -0.01580729 -0.080000676 -0.095807966 

3 -0.016011916 -0.008995678 -0.025007594 

4 -0.030209489 -0.127909792 -0.158119281 

5 -0.065350686 -0.008695625 -0.074046312 
6 -0.049935999 -0.006167722 -0.056103722 
7 -0.020785428 -0.036595428 -0.057380856 
8 -0.116011916 -0.008995678 -0.125007594 
9 -0.007494982 -0.004515415 -0.012010397 

10 -0.009935999 -0.046167722 -0.056103722 
 

Table 4.6.: Mental Workload Index (MWL) - Collaborative Guided Scenario (with robot and 

P-Y design - CGS). 

Candidate Number Diff 2nd-1st parts CGS Diff 3rd-2nd parts CGS Diff 3rd-1st parts CGS 

1 -0.019103308 -0.034435534 -0.053538843 
2 -0.012719359 -0.031394017 -0.044113376 

3 -0.056157198 -0.024992773 -0.08114997 

4 -0.109426131 -0.006291632 -0.115717764 

5 -0.013714581 -0.021316164 -0.035030744 
6 -0.099828734 -0.040684509 -0.140513243 
7 -0.063915727 -0.023708145 -0.087623873 
8 -0.025508684 -0.047807023 -0.073315706 
9 -0.005332025 -0.049304508 -0.054636533 

10 -0.031069888 -0.027391133 -0.058461021 
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Figure 4.6 – MWL variation (Y axis) between the three consecutive parts of the task 

session (30 minutes each) analyzed in the three scenarios 

ANOVA RM (α = 0.05) yields P-value = 0.0001, F = 6.367, and F_crit = 2.449. MWL 

differs significantly among parts (P-Value < α), rejecting the null hypothesis (H≠H0). To 

summarise, based on the statistical analysis of the various phases during the activity, the general 

tests in CS and CGS showed a more substantial drop in the participants' MWL than the SS. To 

clarify, an outlier is defined as the difference in MWL between the third and second halves of 

the standard scenario experiments. It signifies that the statistical analysis in the SS is 

inconsistent with the results of MWL in this scenario, emphasising a not sifnificant variance 

between the two portions. 
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5. SUBJECTIVE AND OBSERVATIONAL MEASUREMENTS 

In this Chapter, it is shown the results through the NASA TLX given at the end of the 

tests to the participants. The evaluation is defined through the Tables 5.1-5.6. 

Table 5.1.: NASA TLX – Mental Workload level results of the participants in the three 

scenarios (Standard Scenario – SS, Collaborative Scenario with robot – CS, Collaborative 

Guided Scenario with robot and Poka-Yoke design - CGS). 

 
Candidate Number 

How mentally 
demanding was the 

task? 
SS 

How mentally 
demanding was the 

task? 
CS 

How mentally 
demanding was the 

task? 
CGS 

1 7 4 3 
2 5 4 2 

3 6 4 3 

4 9 7 5 

5 7 6 4 
6 8 6 3 
7 6 5 4 
8 9 7 3 
9 7 5 2 

10 8 6 4 
 

Table 5.2.: NASA TLX – Physical Workload level results of the participants in the three 

scenarios (Standard Scenario – SS, Collaborative Scenario with robot – CS, Collaborative 

Guided Scenario with robot and Poka -Yoke design - CGS). 

 
Candidate Number 

How physically 
demanding was the 

task? 
SS 

How physically 
demanding was the 

task? 
CS 

How physically 
demanding was the 

task? 
CGS 

1 8 6 3 
2 6 5 4 

3 1 1 2 

4 6 5 3 

5 5 5 3 
6 6 4 3 
7 6 6 3 
8 3 1 2 
9 6 5 2 

10 7 6 4 
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Table 5.3.: NASA TLX – Temporal Demand level results of the participants in the three 

scenarios (Standard Scenario – SS, Collaborative Scenario with robot – CS, Collaborative 

Guided Scenario with robot and Poka-Yoke design - CGS). 

 
Candidate Number 

How hurried was the 
task? 

SS 

How hurried was the 
task? 

CS 

How hurried was the 
task? 
CGS 

1 10 10 5 
2 7 4 4 

3 6 5 3 

4 7 6 4 

5 7 7 5 
6 7 5 4 
7 8 8 3 
8 8 9 5 
9 7 6 3 

10 8 5 3 
 

Table 5.4.: NASA TLX – Performance level results of the participants in the three scenarios 

(Standard Scenario – SS, Collaborative Scenario with robot – CS, Collaborative Guided 

Scenario with robot and Poka-Yoke design - CGS). 

 
Candidate Number 

How successful was 
the task? 

SS 

How successful was 
the task? 

CS 

How successful was 
the task? 

CGS 

1 4 5 9 
2 9 8 9 

3 9 9 10 

4 5 6 9 

5 8 5 9 
6 6 8 8 
7 8 9 9 
8 8 9 10 
9 7 7 10 

10 7 8 8 
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Table 5.5.: NASA TLX – Effort level results of the participants in the three scenarios (Standard 

Scenario – SS, Collaborative Scenario with robot – CS, Collaborative Guided Scenario with 

robot and Poka-Yoke design - CGS). 

 
Candidate Number 

How hard did you 
have to work? 

SS 

How hard did you 
have to work? 

CS 

How hard did you 
have to work? 

CGS 

1 10 8 5 
2 2 2 2 

3 4 3 2 

4 8 7 4 

5 6 6 3 
6 9 7 4 
7 10 10 5 
8 3 1 1 
9 6 5 3 

10 8 6 4 
 

Table 5.6.: NASA TLX – Frustration level results of the participants in the three scenarios 

(Standard Scenario – SS, Collaborative Scenario with robot – CS, Collaborative Guided 

Scenario with robot and Poka-Yoke design - CGS). 

 
Candidate Number 

How stressful was the 
task?  

SS 

How stressful was the 
task?  

CS 

How stressful was the 
task?  
CGS 

1 7 5 3 
2 3 2 2 

3 1 1 1 

4 7 5 3 

5 6 6 2 
6 6 3 2 
7 7 7 2 
8 7 5 3 
9 3 2 2 

10 6 5 4 
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The graphic representation of the NASA TLX results from the tables is shown in Figure 

5.1 below. 

  

(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 5.1 – NASA TLX results in the three scenarios over the participants (X axis): 

(a) Mental workload; (b) Physical workload; (c) Temporal Demand; (d) Performance; (e) 

Effort; (f) Frustration 
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The NASA TLX T-test comparing three scenarios (α = 0.05) revealed: (a) Mental 

Demand, P-Value = 0.0004; (b) Physical Demand, P-Value = 0.08; (c) Temporal Demand, P-

Value = 0.088; (d) Performance, P-Value = 0.046; (e) Effort, P-Value = 0.0085; and (f) 

Frustration, P-Value = 0.01. 

The NASA TLX data show no significant difference in Physical Demand (P-value> α) 

between standard and collaborative situations, supporting the null hypothesis (H=H0). The T-

test analyses of Mental and Temporal Demand, Effort, Performance, and Frustration revealed 

significant differences (P-value < α) across the three situations, leading to the rejection of the 

null hypothesis. In keeping with the EEG study, the NASA TLX demonstrated a lower level of 

MWL of the participants in the collaborative scenario versus the conventional scenario without 

the cobot. 

In addition to the NASA TLX, at the conclusion of the experiments, participants were 

asked additional direct open questions about their experience with and without the robot, its 

fluency motion and trajectory (whether predictable or not), how safe and comfortable the 

interaction with it was, and whether the workplace setting was better in the standard or 

collaborative scenario. According to the answers of the participants, the assembly task with the 

robot resulted in a safer and more comfortable way to pick the plate from the gripper. 

Also, the interaction was deemed more educational and pleasant. In terms of motion, 

the participants did not feel terrified when the robot moved, and its response when they seized 

the pieces from the gripper was not aggressive. Furthermore, the absence of plates on the work 

station, where the participant installed the component, was regarded more positively in the 

collaborative situation. The applicants had more room to assemble the component and were 

more confidence in their ability to complete the assignment, as they felt less distracted. 

Nevertheless, the candidates felt more at ease executing the work in the collaborative guided 

scenario. The connection with the robot and the support of the labels, which guided the 

participants along the tasks, allowed the participants to perform the assembly tasks more 

successfully, as show also in the NASA-TLX. Finally, in the CGS, the level of mental stress of 

the candidates dropped, according to the objective measurement through the EEG analysis in 

which the values of MWL are the lowest among the three scenarios. 

Table 5.7.: Number of components accomplished by the participants in the three scenarios 

(Standard Scenario – SS, Collaborative Scenario with robot – CS, Collaborative Guided 

Scenario with robot and Poka-Yoke design - CGS). 

Candidate Number N. components 
accomplished in SS 

N. components 
accomplished in CS 

N. components 
accomplished in CGS 

1 48 62 75 
2 39 64 75 

3 60 72 70 

4 49 54 73 

5 52 61 73 
6 40 46 75 
7 34 65 69 
8 45 55 75 
9 65 74 75 

10 43 60 69 
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Figure 5.2 – Number of assembly components accomplished correctly in the three 

scenarios – Y axis – over the participants – X axis 

According to the observational study conducted using the checklist on the participants' 

performance in the three scenarios, the candidates completed the task more successfully in the 

CS and GCS than in the SS, as indicated in Table 5.7. The T-test examination of performance 

comparing three scenarios yielded a P-value of 0.00018 (< α = 0.05). Figure 5.2 shows that the 

CS and CGS completed significantly more pieces during the challenge.  

The time required to complete the work did not differ between the SS and CS (Time 

Tests: 90 minutes); see Table 5.8 and Figure 5.3. This is also consistent with the Temporal 

Demand subjective measurement examined in the NASA TLX.  

Table 5.8.: Time of the task accomplished by the participants to complete the tests the three 

scenarios (Standard Scenario – SS, Collaborative Scenario with robot – CS, Collaborative 

Guided Scenario with robot and Poka-Yoke design - CGS). 

Candidate Number Time Task SS Time Task CS Time Task CGS 

1 90 87 80 
2 87 85 80 

3 88 83 79 

4 85 84 82 

5 90 83 75 
6 90 82 77 
7 86 80 78 
8 90 85 80 
9 87 83 74 

10 89 82 73 
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Figure 5.3 – Time Task in the three scenarios – Y axis – over the participants – X axis 

To conclude this section, it was evaluated the efficiency index, expressed as the number of 

pieces correctly assembled over time in percentage defined through the Table 5.9. 

Table 5.9.: Productivity index achieved by the participants to complete the tests the three 

scenarios (Standard Scenario – SS, Collaborative Scenario with robot – CS, Collaborative 

Guided Scenario with robot and Poka-Yoke design - CGS). 

Candidate Number Productivity SS (%) Productivity CS (%) Productivity CGS (%) 

1 53.33  71.26 93.75 
2 44.82 75.29 93.75 

3 68.24 86.74 88.6 

4 57.64 64.28 89.02 

5 57.77 73.49 97.33 
6 44.44 56.09 97.4 
7 39.53 81.25 88.46 
8 50.0 64.7 93.75 
9 74.71 89.15 98.67 

10 48.31 73.17 94.52 
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From the table, the Figure 5.4 shows the graphic representation of the efficiency index 

in SS, CS and CGS. The figure indicates that the efficiency in the scenarios with the robot, CS 

and CGS, is improved compared to the SS. Furthermore, in the CGS, participants accomplished 

the task better than in the CS, improving the quality of the assembly task. 

 

Figure 5.4 – Productivity Index (in %) in the three scenarios – Y axis – over the 

participants – X axis 
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6. DISCUSSION AND IMPLICATION OF THE WORK 

MWL, assessed by EEG as the power ratio β/α (Beta - stress indicator, Alpha - 

relaxation indicator), was considerably lower in the CS and CGS compared to the SS. In the 

ordinary case, the MWL did not change considerably after three consecutive periods. However, 

some participants showed an increase in the power ratio β/α, comparable with Fraboni et al. 

(2021). In the other two cases, MWL declines more during the workday. In the second and third 

phases of the CS, the reduction of the MWL is larger, which is consistent with earlier research 

(Zakeri et al., 2021). 

These findings showed up to be consistent with the subjective analysis, which was 

carried out using the NASA TLX, in which measurements of Mental Demand, Effort, and 

Frustration indicated a significant decrease in these parameters pointed out by the participant 

during tasks with the robot, in line with previous research (Ochoa, 2002; So et al., 2017; Katmah 

et al.). Nonetheless, there was no significant variation in Physical and Time Demands between 

the three scenarios. One probable reason is that the participant accomplished the activity while 

seated in the chair throughout the test, and the physical stress was equal in all three scenarios. 

In terms of time demand, interacting with the cobot did not minimise the time required to 

complete the entire task. This is also consistent with the average time completion of the 

components to assemble, which was the same in both cases. In CGS, the time demand was even 

lower than in the SS and CS to complete the tasks, and participants felt relaxed when working 

with the robot, which is also consistent with the significant reduction of the MWL. (Fraboni et 

al., 2021).  

Finally, the checklist revealed a greater level of performance in terms of successfully 

completed components in the CS and CGS, in contrast to prior findings (Simone et al., 2025). 

To corroborate this, in the NASA TLX, participants reported more success in the collaborative 

activity with the cobot. Overall, the combination of these metrics revealed that the participants 

performed better in completing the work in the collaborative setting in terms of ergonomics and 

task performance.  

Our results are consistent with prior study, which found that an HRI task performed 

better ergonomically than a standard manual assembly task (Fraboni et al., 2021; Gualtieri et 

al., 2022). Furthermore, this research is congruent with additional studies to improve the 

performance of HRI applications in industrial manufacturing environments (Colim et al., 2021). 

In the framework of comparative analysis, the authors carefully developed the CS, and 

thus the CGS, regarding the design of the cobot module implementation, such that it did not 

alter the other systems involved, which were previously present in the SS. The purpose was to 

investigate the variance in MWL in each setting condition, using the single cobot as a 

distinguishing factor between the scenarios. The implementation of the cobot in the workplace 

followed a strict design of the workstation to install the cobot station while keeping safety 

considerations (Valori et al., 2021).  

Furthermore, for the comparative study, it was appropriate to involve the same 

participants for assessments in all three scenarios to enable an accurate comparison of the results 

and to determine how the cobot intervention affected collaborative work. To the best of our 

knowledge, this is the first study to compare human performance with MWL in a comparative 

assessment with the same number of participants and the only discriminant being the cobot 

engaging with people in the workplace for an industrial HRC task.  
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Regarding the number of participants, the sample size was evaluated through ANOVA 

RM within factors in the G*Power tool, as shown in the previous sections of the design of 

experiments. Furthermore, the number of candidates engaging in a long laboratory session (90 

minutes) and reported for this comparison research, conducting the tests in three scenarios 

(N_tests = 30), is comparable to HRI tasks for ergonomic assessment research (Gualtieri et al., 

2021). 

The methodology implemented in this study indicates the feasibility and validity of 

blending EEG data with subjective measurements (NASA TLX) and observational measures 

(checklist) in HRC tasks. The use of EEG is growing rapidly due to its suitability, effectiveness, 

and practicability in many circumstances (Katmah et al., 2021).  

Manual assembly operations, such as wire harnessing, remain an obstacle in industrial 

processes. This has prompted the investigation and study of HRC systems that enable operators 

to work alongside robots. Thus, understanding the MWL in HRC is crucial (Chowdhury et al., 

2020). However, the method of using wireless, real-time, objective metrics like EEG in 

industrial HRC tasks to define the MWL in terms of brainwave activity is still in its early phases 

(Zhou et al., 2022).  

Certain authors have provided a strategy for measuring MWL in smart factories. 

However, the efficacy of these tests revealed no significant difference between a scenario 

without and with the robot (Villani et al., 2022; Caterino et al., 2023). Other research analysed 

MWL exclusively using subjective assessments (Fraboni et al., 2021; Gualtieri et al., 2022).  

Compared to prior studies, this study presents an effective technique, with results 

demonstrating a reduced level of MWL and stress (EEG and NASA TLX) and a higher level of 

performance in terms of correctly created components (checklist). Furthermore, the purpose of 

our research activity is to determine an effective evaluation of MWL by a neuroergonomic 

assessment through analysing MWL utilising different measures.  

The study was carried out in three distinct scenarios, each with the exact same number 

of participants, to evaluate the MWL of people working with and without the robot.  Other 

studies looked at the cobot's contribution to HRI tasks with different groups of participants or 

a single group but with a range of tasks (Simone et al., 2021; Gualtieri et al., 2022). For the 

sake of the comparison and retain the cobot as the only distinguishing factor between the three 

situations, it was reasonable to choose the identical number of participants. 

This study had limitations and issues. The study began with volunteers from the Faculty 

of Engineering at the University of Kragujevac in Serbia. Candidates with technical and 

analytical skills may be more eager to work with cutting-edge technology like the cobot while 

wearing the neuroergonomic EEG caps (Lin et al., 2007). This may explain why the participant 

felt more competent in dealing with the cobot.  

Furthermore, participants who took the examinations in a collaborative setting may have 

had a better understanding of the task that had previously been completed in the standard 

scenario. We cannot completely exclude the chance that this will affect the research study's 

performance and be a constraint.  

To eliminate memory bias, participants took the test four months after the tests in the 

typical situation, which is comparable with other research findings showing that a shift of brain 

memory is lost after one month (Xiao-ming and Jie-fang, 2009). Recruitment was also a 

difficult task. In the SS, twice as many people were recruited for the tests as were described in 
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this article. Many students were reluctant to engage in the following CS and CGS for personal 

or academic pursuits because the three scenarios were held at different times.  

In the literature evaluation, the MWL parameter (β/α) was found to be the most 

important in predicting participants' cognitive burden in three scenarios. Other studies 

employed different brainwaves, such as Theta waves, to evaluate the MWL (Hopko et al., 

2022). However, the selection of a stress indicator remains contested (Ismail and Karkowski, 

2020; Eyam et al., 2021; Panchetti et al., 2023). This is why, in this study, the scientists 

combined the quantitative analysis via the EEG with subjective assessments to define the 

fluctuation of the operator's cognitive traits in the three scenarios.  

Finally, during the test preparation phase, it took a while to set up and mount the EEG 

neuroergonomic hat. Due to the layer of gel on the electrodes, participants had to wait 20 to 30 

minutes before mounting the EEG hat. Bringing up EEG devices remains a time-consuming 

process. The primary problem was to administer gel in the electrodes to ensure adequate contact 

with the scalp.  

However, the most innovative EEG devices can avoid this issue by using unique 

electrodes that do not require the gel, saving time during the setup process. Regarding the job 

duration (1.5 hours), we chose this period for MWL categorization because time is one of the 

limitations in MWL analysis. A shorter time frame may not have been enough to guarantee the 

quality of EEG data for MWL analysis. Longer time, on the other hand, may have altered 

memory bias and thus task performance. Furthermore, the more prolonged duration may have 

decreased the number of participants who were unable to administer the exams due to personal 

or academic obligations. 

Although the outcomes are significant, it should be noted that the research was 

conducted in a controlled environment, such as a laboratory. Participants completed the 

activities in all three conditions while sitting in an enclosed workplace. However, motion 

artefacts and noise are usually dominating in industrial activities, and their presence may 

influence EEG collection. 

In terms of experimental contexts, laboratory experiments fail to account for certain 

possible variables found in real manufacturing systems, such as temperature, noise, and the 

worker's sense of responsibility for the production process's success or unexpected breakdowns, 

all of which can have an impact on stress. As an added benefit, laboratory simulations allow for 

the use of the most sensitive measurements that would not be appropriate for use in a working 

environment, because their high sensitivity would result in the recording and collection of data 

that is heavily influenced by artefacts and is insufficient for reliable analysis.  

However, measurements in manufacturing environments are constrained by the 

company's production process. Some production-process variables that may influence workers' 

stress levels, such as line speed or time constraints, cannot be examined since variations can 

have a significant impact on actual production flow, reducing corporate efficiency and 

productivity. As a result, measurements in real situations may be less precise and detailed than 

those in laboratories (Blandino, 2023). 

Furthermore, environmental factors play a crucial part in stress assessment. Thermal 

discomfort, a new type of stress for workers, can result from both high and low temperatures 

(Mansi et al., 2022). Thermal discomfort, when combined with normal noise levels in real-

world industrial settings, affects not only workers' physiological processes but also their 

subjective perceptions of stress (Abbasi et al., 2020; Gnecco et al., 2023). Furthermore, noise 
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and bad lighting conditions cause errors in information perception during task execution 

(Ahmad et al., 2015). 

The evaluation of these aspects may aid in the prevention of health problems and 

physical damage to workers, but it may also have a positive impact on the company's 

productivity (Mura and Dini, 2023). 

Finally, worker-specific criteria such as gender, age, competence, experience, or 

background may be addressed in a more comprehensive study. There have been a few studies 

linking demographic variables to specific stress markers. This demonstrates that there is a gap 

in the literature that must be filled. 
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7. CONCLUSION 

The deployment of cobots in manufacturing processes and work systems has increased 

in recent years. The rising deployment of these technologies in fenceless industrial areas has 

motivated researchers to investigate the operator's cognitive workload when interacting with 

the robot. Wearable sensors are being utilised to investigate the human reaction in terms of 

cognitive effort. 

The goal of this PhD dissertation is to demonstrate the viability of assessing participants' 

workloads through a thorough analysis of subjective (NASA TLX), objective (EEG), and 

observational (checklist) measurements, comparing participants' mental workloads in three 

distinct situations performed in a laboratory setting. We designed three different scenarios: a 

standard scenario in which participants had to carry out random manual assembly tasks without 

any external intervention; collaborative scenario in which the participant had to carry out the 

assembly task along with the robot; and collaborative guided scenario in which the participants 

worked alongside the cobot and received instruction through P-Y labels.  

The scenarios with the involvement of the cobot are developed with ergonomics and 

safety in mind, with the cobot embedded into the modular workstation so that participants can 

engage without affecting the location or involvement of other equipment. The goal of this study 

was to examine if the mental workload index parameter could be significantly employed to 

distinguish the participant's mental workload across the three scenarios. Lower mental 

workload levels were identified in activities involving the cobot utilising a variety of 

measurements. Furthermore, the observational study shows an improvement in productivity in 

both the collaborative and guided collaborative settings. 

Regarding the proof of hypotheses defines at the beginning of this PhD dissertation: 

H1 - The implementation of collaborative robot solutions can reduce the level of mental 

workload (MWL) during work activities. 

H2 - Reducing the level of mental workload improves the efficiency, effectiveness, and 

quality of work activities. 

H3 - It is possible to define mental workload through objective sensorial devices and 

measurement. 

H4 - The use and implementation of collaborative robots has subjective positive impact 

on workers during work activities. 

For the H1, it has been empirically showed that the implementation of cobots in the 

workplace, considering ergonomic and technical aspects to ensure a proper collaboration 

alongside the operator, has brought a significant reduction of MWL, proven with ANOVA 

statistical analysis, through the combination of objective (EEG) and subjective measurements 

(NASA-TLX). The proof of this hypothesis still presents some limitations. Firstly, the analysis 

was carried out for a sample of participants (N = 10). The chosen sample, though it was proper 

for the analysis under certain conditions, is still poor to define a thorough understanding of 

MWL trend in a HRC task. Further analysis should be addressed for a larger sample of 

participants.  

Secondly, to adhere to the stipulated comparative evaluation, the same participants 

completed the task in all three scenarios over a minimum of four months. Whereas research 
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investigations in the field of Neuroergonomics demonstrated that this timeframe was suitable 

for not having a memory bias of an activity performed by humans, the studies were only 

empirically shown. To the greatest extent of our knowledge, this is the first study to compare 

human performance and MWL in a comparative analysis with the same number of participants 

and the sole discriminant being the robot engaging with them in the workplace for an industrial 

HRC task. 

For the H2, it has been shown that the reduction of MWL improves the level of 

efficiency, effectivity, and overall, quality of the task. The number of components accomplished 

by the participants over the time task, thus the productivity of the task, was shown to be higher 

when participants worked alongside the cobot. Specifically, in the third scenario, the level of 

productivity highly soared than in the standard scenario without the cobot.  

Regarding the H3, it has been showed that through objective sensorial devices it was 

possible to evaluate MWL. The deployment of EEG paved the way to a real-time, efficient, 

non-invasive neuroergonomic analysis of MWL. Different parameters could be extracted to 

evaluate MWL. 

Among the the power ratios presented in the literature review, the MWL parameter (β/α) 

was the most significant in determining the cognitive burden of participants in three situations. 

In other research, other brainwaves, such as theta waves, were used to analyse the MWL. 

However, today, the selection of a stress indicator is disputed. Furthermore, setting up and 

installing the EEG neuroergonomic hat took time during the test preparation period. Due to the 

gel on the electrodes, participants had to wait 20 to 30 minutes to mount the EEG cap. Indeed, 

setting up EEG devices remains a time-consuming operation.  

For the H4, subjective evaluations such as the NASA-TLX and surveys revealed that 

the deployment of cobots had a favourable impact on participants during the assembly activity. 

According to the participants' responses, the assembly activity with the robot made it safer and 

more pleasant to take up the plate from the gripper. Furthermore, the encounter was deemed 

more educational and pleasurable. In terms of motion, the participants did not feel terrified 

when the robot moved, and its response when they seized the pieces from the gripper was not 

aggressive. 

FUTURE RESEARCH 

This research study opened the door for the neuroergonomic analysis of MWL in HRC. 

Further studies should be addressed in the evaluation of MWL through other efficient 

measurements to have a comprehensive analysis of its trend. The combination of these 

measurements would be suitable for a thorough understanding of the cognitive demands of 

operators in a HRC task. Furthermore, the ongoing research would consider the relationship of 

mental workload with physical workload. Further comparative analyses would allow to define 

hoe the physical workload trend evolves compared to the MWL in the HRC tasks. For this 

analysis, the deployment of electromyogram (EMG) sensors would be suitable for the analysis. 

Like the EEG, this measurement offers a real-time, efficient, compact, and non-invasive 

analysis of the physical demand of the operator in different parties of the bodies of participants 

while performing the task. The design of the system necessary to use, record, and interpret EMG 

data would be crucial to define the level of physical fatigue and to assess the relationship with 

the MWL.  
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ANNEX 1: EXPERIMENT SET-UP PROTOCOL 

- ASSEMBLY OF THE CAP: 

1. Check whether the cap is well washed (there is no gel residue on the electrodes). 

2. Put the cap on the head and confirm that it is centred. 

3. Connect the amplifier to the cap connector. 

4. Connect the amplifier in the SmartingStreamer3.4.3 software. 

5. Select a sampling frequency of 250 Hz. 

6. Select Measure impedance on ref to measure the impedance on the reference. 

7. Start data streaming. 

8. Fill the 3 electrodes with gel: the DRL white electrode, the left or right electrode of the DRL 

electrode, and the last REF blue electrode. Aim for the reference impedance in the software to 

show ideally less than 5 kOhms, and maybe up to 10 kOhms (must be light green and stable). 

9. Stop streaming. 

10. Select Measure impedance to measure impedances on all electrodes and start streaming. 

11. Fill one electrode at a time with gel so that they are light green and stable. 

12. After mounting, turn off streaming and select No impedance measurement. 

13. Select the gyro data option. 

14. Start streaming and view the EEG signals in the Show signals window. 

- RECORD FILE (there is a video with the same instructions): 

15. Run the experimental script depending on the task in the queue (.exp). 

16. In the SmartingStreamer3.4.3 software, press the Record button 

17. In the recording window, click on the refresh streams button 

18. select the EEG stream 
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19. Select the Presentation stream. 

20. Choose the location and name of the file. Start recording. 

21. Run the experimental file by clicking the Run button. 

NOTE: If no sound is heard, immediately stop the experiment, and record the file. Go to the 

Sound Settings of the computer and change the Output Device. 

22. After the experiment, stop recording the file in SmartingStreamer3.4.3 software. If there 

were lost data, write down how much and for which file! 
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ANNEX 2: QUESTIONNAIRE FOR PARTICIPANTS 

1. How was the experience with and without the robot? 

2. How was the robot motion fluency in the interaction? (Predictable or not) 

3. How safe and comfortable was the participant during the interaction? 

4. Were you satisfied with the experience? 

5. Did you feel an aggressive motion from the robot? 

6. Was better the desk without the schemes next to you? 
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	 Type of Power Analysis:
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	 Error Probability (α): the probability of making a Type I error, which is rejecting the null hypothesis when it is actually true (H≠H0). Commonly set at 0.05.
	 Power (1 - β): the probability of correctly rejecting the null hypothesis when it is false (i.e., the study's ability to detect an effect if there is one). Typically, researchers aim for 80% power (0.80).
	 Number of Groups or Measurements: relevant in designs involving multiple groups or repeated measurements.
	 Correlations and Non-sphericity Correction (ε): used in more complex designs like Analysis of Variance with repeated measures (ANOVA RM), where correlations among repeated measures and the violation of sphericity assumption are considered.
	The test family selected is F-test which is a type of statistical test that is used to compare the variances of two or more groups to see if they are significantly different from each other. In ANOVA, the F-test is used to determine whether there are ...
	Regarding the type of statistical test, ANOVA repeated measures (ANOVA RM) within factors was deployed. ANOVA RM with repeated measures within factors is a statistical method used to analyze data where the same subjects are subjected to multiple condi...
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