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“The scientific man does not aim at 
an immediate result. He does not 
expect that his advanced ideas will 
be readily taken up. His work is like 
that of the planter - for the future. 
His duty is to lay the foundation for 
those who are to come, and point 
the way.” 

 
Nikola Tesla 



 

 

 

ПРЕДГОВОР 

Првенствено желим да се захвалим мојој вереници Јелени Цветић за пуну 

подршку током докторских студија. Јелена је још једном несебично подржала 

моје одсуство током студирања, што је резултирало израдом докторске 

дисертације, за шта сам јој неизмерно захвалан.  

Желео бих да изразим своју захвалност Европској Комисији и фондацији Marie 

Curie за финансијску подршку током израде докторске дисертације, која је 

реализована кроз пројекат “Innovation Through Human Factors in Risk analysis and 

management”, InnHF- FP7-PEOPLE-2011-ITN-289837.  

Посебно сам захвалан мом ментору професору Ивану Мачужићу за предано 

менторство кроз све фазе докторских студија. Такође, професор Мачужић се 

снажно залагао за покретање научних истраживања из нове научне дисциплине 

на катедри за производно инжењерство. Такво залагање и његова подршка су 

биле од неизмерног значаја, а нарочито у раним данима докторских студија, 

када су многи сумњали у могућност спровођења неуроергономских истраживања 

на катедри за производно инжењерство. Професор Мачужићу ми је пружио 

помоћ и током поставке експеримената, као и у поступку набавке опреме која се 

користила у експерименталним истраживањима и приликом адаптације 

лабораторије за неуроергономска истраживања, што је на послетку резултирало 

објављивањем научних радова, на чему сам му изузетно захвалан. Поред 

професора Мачужића, професор Бранислав Јеремић је заслужан за покретање 

истраживања у научној дисциплини неуроергономије. Професор Јеремић је 

такође био менаџер InnHF пројекта на Универзитету у Крагујевцу и самим тим је 

помогао адаптирање лабораторије за неуроергономска истраживања. Поред тога, 

професор Јеремић је, кроз пружање критичког погледа у процесу израде 

експеримената али и приликом писања научних радова у великој мери помогао 

њихову израду. Изузетно сам захвалан и професору Петру Тодоровићу на помоћи 

коју ми је пружио при обради сигнала који су добијени током експерименталних 

истраживања, као и током поставке експеримента, а нарочито за израду GSR 

уређаја и HR monitor-а (који су развијени у оквиру InnHF  пројекта, уз помоћ Саше 

Славнића). 



 

 

Неизмерну захвалност дугујем мом “незваничном ментору”, професорки Вањи 

Ковић (Филозофски факултет, катедра за психологију, Универзитет у Београду) 

за њену изузетну подршку током истраживања. Желео бих да истакнем да без 

њеног знања из области експерименталне психологије израда ове дисертације не 

би била могућа. Такође, професорка Ковић је учествовала у свим фазама израде 

ове дисертације, укључујући поставку експеримената, као и у анализи и 

интерпретацији добијених резултата. Поред тога, професорка Ковић је несебично 

посветила своје време током свих фаза припреме научних радова, укључујући 

писање, као и одговоре рецензентима, за шта сам неизмерно захвалан.  

Ивану Глигоријевићу бих желео да се захвалим што се прикључио тиму у пројекту 

као искусни истраживач (Experienced Researcher). Иван је био спреман да 

несебично подели своје знање из области обраде биомедицинских сигнала што је 

представљало један од кључних доприноса изради ове дисертације.. Такође, 

Иван ми је помагао кроз све фазе истраживања, укључујући поставку 

експеримента, увођење у област обраде сигнала, анализу и интерпретацију 

података. Поред тога, Иван је одвојио своје време да буде самном у лабораторији 

током већег дела експерименталних истраживања. На крају, уз Иванову помоћ 

сам стекао искуство у писању истраживачких чланака, с обзиром да је он 

активно учествовао у писању мог првог рада за научни часопис али и осталих 

чланака који су објављени током InnHF пројекта. 

Такође,  желео бих да одам признање и професору Maarten De Vos-у (са катедре 

за биомедицински инжењеринг, Универзитет у Оксфорду), који је кроз критичке 

коментаре на рад који је обављен у нашој лабораторији допринео  унапређењу 

квалитета самог рада. Неизмерно сам захвалан и професорима Милошу 

Миловановићу и Мирославу Миновићу (Лабораторија за мултимедијалне 

комуникације, Факултет организационих наука, Универзитет у Београду) за 

њихову сарадњу током InnHF пројекта, као и током припреме конференцијског 

рада на тему мултимодалне имплицитне интеракције између човека и рачунара. 

Такође професори Миловановић и Миновић су учествовали у развоју апликације 

која се користила за снимање покрета тела (помоћу Kinect-а), као и софтвера за 

снимање покрета шака (снимљених помоћу Leap Motion-а). 

Још један велики допринос самој изради дисертације је пружио мој брат Богдан 

Мијовић, који ме је на почетку докторских студија увео у област обраде ЕЕГ 

сигнала. Такође, Богдан ми је помагао током обраде резултата добијених из 



 

 

експерименталних истраживања, као и приликом давања одговора 

рецензентима, иако није био међу потписаним ауторима објављених радова. 

Славици Дамјановић сам веома захвалан на помоћи коју ми је пружила са 

администрацијом током целог периода студирања и трајања InnHF пројекта. 

Славица је била веома посвећена решавању разних ситуација које су се наметале 

током трајања пројекта, као и у комуникацији са универзитетом, што је 

резултирало решавању свих проблема који су настајали. Такође, желео бих да се 

захвалим колегама из центра за теротехнологију: Милану Раденковићу, Марку 

Ђапану, Марку Милошевићу, Evanthiа-ји Giagloglou, Christos-у Tsiafis-у и Alberto 

Petruni-ју; за њихову подршку у тешким тренуцима, као и доброј атмосфери која 

је владала током докторских студија. За то сам посебно захвалан Милану 

Раденковићу, јер смо доста слободног времена провели у brainstorming-у, који је 

на крају резултирао успешном спровођењу разних идеја до којих смо долазили 

на тај начин.  

Посебну захвалност дугујем деди Гојку, који је изненада преминуо током израде 

ове дисертације. Наиме, Гојко је био изванредан инжењер и проналазач, а 

посебно ми је помогао пред сам почетак експерименталних истраживања, тако 

што је креирао један део импровизоване машине која се користила у 

експериментима који су спроведени у току израде дисертације. На жалост, деда 

Гојко није дочекао да види крајњи резултат истраживања, а верујем да би био 

поносан на то како је његова помоћ допринела изради мог доктората. 

Желео бих да поздравим и све колеге које су учествовале у InnHF пројекту, и са 

којима сам квалитетно проводио време током летњих школа, конференција и 

активности које су биле везане за сам пројекат. Посебно се захваљујем Центру за 

иновативне људске системе (Centre for Innovative Human Systems) са Тринити 

колеџа у Даблину за то што су прихватили да први део праксе, која је била везана 

за пројекат, спроведем у њиховој институцији. Такође, посебно бих се захвалио 

научници Nora Balfe, која је ревидирала све радове на којима сам радио и дала 

коментаре који су водили побољшању квалитета објављених радова. Поред тога, 

захвалан сам и колегама из компаније ARIA где сам провео други део праксе. 

Посебно се захваљујем професорки Micaela Demichela, Gianfranco Camuncoli и 

Eleonora Pilone, за њихову подршку током тог периода, као и за помоћ у 

решавању административних проблема који су се јављали током пројекта. 

Такође, желим да се захвалим компанији Тетрапак из Горњег Милановца, у којој 



 

 

сам провео трећи део праксе. Посебно сам захвалан менаџменту Тетрапака, који 

је препознао потенцијал истраживања, која су спроведена на Универзитету у 

Крагујевцу и који су нам омогућили да мерења спроведемо на радницима у 

индустријском окружењу. За то сам неизмерно захвалан Драгољубу Гајићу и 

Александру Брковићу. 

Изразио бих своју захвалност и мастер студентима Николи Бандуки и Стефану 

Ђурићу, за њихово залагање током експерименталних истраживања и посебно за 

то што су организовали студенте Факултета инжењерских наука (Универзитета у 

Крагујевцу) да добровољно учествују у спроведеним истраживањима. Такође бих 

желео да се захвалим студенткињи Мини Јевтовић (са смера за психологију, 

Филозофски факултет, Универзитет у Београду), за рецензију финалне верзије 

превода ове дисертације.  

Желео бих да се захвалим mBrainTrain тиму (Драгошу Петровићу, Марку 

Станковићу, Богдану Миовићу, Ивану Глигоријевићу и Милени Окошановић) за 

њихову хардверску и софтверску подршку током целог периода докторских 

студија.  

Неизмерну захвалност дугујем својим родтељима Нади и Драгутину, као и сестри 

Ксенији за њихову бригу и подршку током мог студирања. Такође, желим да се 

захвалим баби Љубици (која се бринула сваке недеље током мојих путовања), као 

и остатку породице на подршци коју су ми пружали добијао током докторских 

студија. 

 

У Kрагујевцу, 2016. године       Аутор  
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Р Е З И М Е 

РАЗВОЈ И ИМПЛЕМЕНТАЦИЈА МУЛТИМОДАЛНОГ СИСТЕМА ЗА ПРАЋЕЊЕ 

ПАЖЊЕ РАДНИКА У РЕАЛНОМ РАДНОМ ОКРУЖЕЊУ 

Како технологија стално напредује, индустријске несреће које се везују за 

неисправност техничких система су скоро скроз умањене. Из тог разлога, 

људска грешка се сматра узрочником око 80% несрећа у индустрији. Један од 

главних узрочника људске грешке је лимитирана ментална издржљивост 

људских оператера, која узрокује пад у пажњи радника и последично води до 

грешака у раду. Класичне ергономске методе које се користе за процену 

когнитивног стања човека су угланом квалитативне и субјективне, и према 

томе су прилично непоуздане. Из тог разлога, психофизиолошки сензори су 

почели да се примењују у ергономиским истраживањима, са циљм да обезбеде 

објективне и квантитативне мере радниковог когнитивног стања. Пратећи 

тај тренд, неуроергономија се појавила као научна под-дисциплина ергономије. 

Предност коришћења неуроергономских метода, је у томе што неуроергономија 

истражује функционалну зависност између динамике мозга и бихевиоралних 

параметара и тако заобилази теоретске везе које описују корелацију између 

ових параметара, а које су коришћене у ергономији.      

Ова дисертација представља научни оквир за мултимодални систем који 

је предложен да се користи за праће пажње радника и који користи 

психофизиолошке сензоре и бихевиорална мерења. Систем се састоји од 

психофизиолошких сензора, као што су: галвански реакцију коже (енг. galvanic 

skin response - GSR), мерење откуцаја срца (енг. heart rate –HR) и 

елекроенцефалографију (енг. Electroencephalography – EEG); бихевиоралне 

модалитете као што су: Времена реакција (енг. reaction times – RTs) и сензоре за 

праћење покрета (енг. motion capture – MoCap), “Kinect” the “Leap Motion”. Иако је 

представљен оквир за снимање поменутих модалитета у реалном времену, ова 

дисертација је фокусирана на резултате који су добијени снимањем EEG, RTs и 

Kinect модалитета.   

Главни циљ дисертације је истраживање могућности коришћења 

савременог преносног EEG-а у индустријским условима, са циљем праћења 

пажње радника. Претходна истраживања која су користила EEG су била 

углавном обављана у контролисаним лабораторијским условима и због тога, 

налази из тих студија се узимају са одређеном дозом резерве. Да би се снимио  
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EEG у реалном радном окружењу, радно место у којем радници склапају 

хидраулично црево је веродостојно реплицирано и субјекти у студији су 

симулирали тај процес. 

Дисертација се састоји од четири експерименталне студије. У првој 

студији, испитивано је како честе микро-паузе утичу на ниво пажње радника, 

поредећи амплитуде P300 Komponente evociranih kognitivnih potencijala (eng. 

event-related potential – ERP) пре и непосредно после периода микро-паузе. Главни 

налаз је да микро-паузе позитивно утичу на ниво пажње радника и предложено 

је њихово укључење у дневне активности радника. У другој студији, 

истраживано је да ли радници имају већи ниво пажње уколико им је наметнуто 

са којом руком да почну склапање црева. Две психолошке парадигме су биле 

представљене учесницима у студији, паралелно са симулиранм акцијом 

склапања црева. У првој парадигми, учесници су могли да изаберу да отпочну 

операцију са било којом руком, док су у другој били условљени да започну 

операцију руком која одговара смеру стрелице која се приказивала на екрану 

испред њих.  Ово истраживање је открило да су учесници имали већи ниво 

пажње у случају условљавања којом руком да започну операцију, јер је 

амплитуда P300 компоненте била значајно виша у поређењу са случајем када 

су могли слободно да изаберу са којом руком ће започињати задатак. 

Преостале две студије су имале за циљ да представе оквир за праћење 

когнитивног стања радника у реалном времену. Трећа студија је испитивала 

пропагирање P300 амплитуде и корелација између P300 амплитуде и времена 

реакција је испитивана. На групном нивоу, јасна негативна корелација између 

ова два модалитета је пронађена, међутим она није била конзистентна на 

индивидуалном нивоу. Због тога је наглашена потреба да се овакви резултати 

пријављују на индивидуалном нивоу у ергономским студијама. Последње 

истраживање које је представљено је испитивало да ли је количина покрета 

који нису у директној вези са задатком, негативно повезана са пажњом радника. 

У том циљу, предложена је метода кватификације ових покрета помоћу 

концепта енергије покрета. Прелиминарни резултати потврђују да је енергија 

покрета негативно корелисана са ЕЕГ модаитетима пажње и предложен је 

научни  оквир будућег система за праћење пажње у реалном времену.  

Kључне речи: Неуроергономија, Пажња, Бежична електроенцефалографија, 

Event Related Potentials, P300 компонента, Индекс ангажовања, Kinect, Задатак 

Бројеви, Задатак Стрелице 
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ABSTRACT 

Development and Implementation of Multimodal System for Attention 
Monitoring in Naturalistic Work Environments 

As technology is ever advancing, industrial accidents related to technological 

malfunctioning have been almost diminished, leaving the human error responsible for 

up to 80% of the remaining accidents. One of the main causes for this is limited mental 

endurance of human operators’, which causes the attention decline and consequently 

leads to an operating error. Classical ergonomics methods for assessing the operators’ 

cognitive state are still dependent on the subjective and qualitative methods, thus being 

unreliable. For that reason, in the recent years the psychophysiological sensors were 

included in the ergonomics research, with the aim of providing the objective and 

quantitative measures of the operators’ cognitive state. Following that path, the 

neuroergonomics emerged as a scientific discipline, which investigates the human 

brain functions in relation to performance at work. The advantage of using 

neuroergonomics is that it investigates the functional relationship between brain 

dynamics and behavioral parameters, thus avoiding theoretical constructs that 

describe the correlation between these two, and which are ubiquitously used in 

ergonomics research. 

The present dissertation introduces a framework for the multimodal attention 

monitoring system, utilizing psychophysiological and behavioral measurements. The 

multimodal system consists of psychophysiological sensors, such as galvanic skin 

response (GSR), heart rate (HR) sensor and electroencephalography (EEG), the 

behavioral modality of the reaction times (RTs), and the motion capture (MoCap) sensors 

Kinect and the Leap Motion. Although the framework for synchronous and real-time 

recording for all the sensors was provided, this thesis was focused solely on the results 

obtained from the EEG, RTs and Kinect recordings.  

The main aim of the presented dissertation is to investigate the possibility of 

utilization of the recently available wearable electroencephalography (EEG) in 

industrial setting, with the goal of the operator’s attention monitoring. Previously 

reported EEG studies that were concerned with the attention states of the operators 

were mainly confined to the strictly controlled laboratory conditions and therefore, the 

findings from these studies needed to be taken with the certain ambiguity. In order to 

record the EEG in naturalistic environment, specific workplace where operators’ 

assembly the hoses, used in hydraulic break systems in vehicles, was faithfully 
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replicated and the participants in the studies simulated the manual assembly 

operations.  

The present dissertation consists of four experimental studies, where the first two 

were concerned with investigation how different work conditions influence the cognitive 

state of the operators’, i.e. the studies were concerned with the assembly task design. 

In the first study, the influence of the frequent micro-breaks on the cognitive state of the 

workers’ was investigated, by comparing the P300 event-related potential (ERP) 

amplitude prior and immediately following the micro-break period. It was found that 

the micro-breaks enhance the attention of the operators’ and the proposal for their 

inclusion in the regular work routine was made. Second study investigated the 

influence of hand alteration on the attention level of the operators’. For that aim, the 

participants in the study were presented with two distinct task: the one in which they 

could initiate the assembly operation with whichever hand they preferred, and the one 

in which they were conditioned with which hand they should initiate the operation. 

This study revealed that the instructed responding induces the higher attention, as 

assessed through the P300 component’s amplitude, compared to the experimental 

condition where the participants could freely choose the hand for the initiation of the 

assembly operation. 

Further, a framework for the on-line assessment of the operators’ cognitive state 

was provided. In the third experimental study, the propagation of the P300 component’s 

amplitude was observed and correlated with the RTs. On the group level, a negative 

correlation was found, confirming the previously reported finding. However, due to 

individual differences, the correlation on the individual level was inconsistent, 

emphasizing the necessity for the individualized EEG measurements for the reliable 

attention monitoring system. Finally, it was investigated whether the quantity of task 

unrelated movements corresponds to attention of the operator, as previously shown to 

be negatively related to the attention of operators’. For that aim, the concept of 

movement energy (ME) was introduced and correlated with EEG attention-related 

modalities. The initial finding from this study showed that the ME is negatively related 

to the EEG attention-related modalities and proved that the future attention monitoring 

system can be built based on these modalities.  

Key words: Neuroergonomics, Attention, Wearable Electroencephalography, Event 

Related Potentials, P300 Component, Engagement Index, Kinect, Numbers task, Arrows 

task 
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1. Introduction 

In the early years of industrialization, industrial accidents were reported mainly in 

terms of technological malfunctions, ignoring the human element as the cause 

(Gordon, 1998). However, as the technology became increasingly reliable, failures 

related to it have been dramatically reduced, attributing majority of the remaining 

accidents to the human elements in the system (Hendy, 2003). Importantly, humans 

are often characterized as the most fallible element in the production line, mainly due 

to limited mental and physical endurance that can sometimes cause behavior and 

responses to be unpredictable (Hamrol et al., 2011). Due to mental strain, human 

element in the production system is responsible for 80% of all industrial accidents 

(Reason, 1990; Stanton et al., 2005).  

In order to reduce the human participation in production system, industry 

tends to automate as much processes as possible, thus reducing the probability of 

human error and increasing productivity. However, although manufacturing industry 

has aimed to reach “lights-out” manufacturing, i.e. fully automated factories (Topkins 

et al., 2010) in which the human failures should be reduced as humans would be 

exempted from the production processes itself, there are still many industrial 

processes relying on human operators. Important notion is that occupational health 

and safety (OHS) researchers and specialists are persuaded that significant increase 

in human operators’ errors are actually linked to the growing incompatibility between 

workers and modern technology (Fafrowicz and Marek 2008). Thus, studying how 

human operators interact with the system has received considerable attention in both 

scientific research and industrial practice (Stanton et al., 2005).  

The scientific discipline that investigates the interaction between system and 

human operators is called human factors and ergonomics (HF/E) or ergonomics 

(Salvendy, 2012). Classical ergonomics approach for studying human cognitive state 

and the interaction between humans and operating system mainly utilizes qualitative 

and subjective methods, such as questionnaires and measurements of overt 

performance. However, these methods are often unreliable and unable to investigate 

underlying (covert) cognitive processes of workers during their everyday routine in 

industrial environments (Parasuraman, 2003). Moreover, classical ergonomics 
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methods are unable to provide the real-time data acquisition and processing.  For 

that reason, neuroergonomics emerged as novel path in ergonomics research 

(Parasuraman, 2003; Parasuraman and Rizzo 2006). Neuroergonomics merges 

knowledge form ergonomics and neuroscience, and it is defined as the science 

discipline that studies the human brain in relation to work (Mehta and Parasuraman, 

2013a). 

This dissertation, which presents a partial fulfilment of the requirements for 

the degree of PhD in Engineering, is concerned with the neuroergonomics studies of 

manual assembly workplaces, where operators are performing monotonous and 

repetitive manual assembly operations. For that aim, advances in both ergonomics 

and neuroergonomics are discussed in introductory chapters, following which general 

methodology for the development of the multimodal system for recording and analysis 

of multiple signal modalities, which are related to cognitive state of the workers, is 

presented. Finally, four neuroergonomics studies are presented and the results 

discussed.  The findings from these studies could be used for the manual assembly 

task design. Finally, the framework for the on-line attention monitoring is presented 

and discussed.  

1.1 The aim of the Dissertation  

Existing literature on ergonomics is mainly concerned with the physical ergonomics, 

i.e. with the postural loads and prevention of potential work-related musculoskeletal 

disorders (MSDs). However, far less attention is dedicated to the cognitive states of 

the workers. Moreover, as discussed in previous section, the methodologies that are 

used for the assessment of cognitive states of workers are unreliable. For that reason, 

this dissertation aims in investigating the applicability of the neuroergonomics 

methods for the assessment of the cognitive states of the workers during monotonous 

and repetitive manual assembly operations. In order to achieve this goal, a workplace 

replica was create at the Faculty of engineering (University of Kragujevac), where 

participants in the study were simulating manual assembly operation while wearing 

wearable sensor network for recording the physiological signals of workers.  

The second aim is investigation of the possibilities for recording the body 

movements of the participants, by using the motion capture (MoCap) devices that 
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relies on structured light technology. In this way, the movements can be recorded 

without the need for the markers and therefore, the participants in the study are not 

imposed to any movement constraints. Usually, the studies that used the MoCap 

devices for the ergonomics were concerned with the prevention of the work-related 

MSDs. However, the body movements could be an important indicator of cognitive 

states. Therefore, in presented experimental settings, the MoCap devices were mainly 

employed for the estimation of the cognitive state of the participants. 

In the Chapter 5, a general methodology used for the achievement of the 

previously mentioned goals was presented. Finally, a relationship between behavioral 

and brain signal modalities were investigated with the aim of investigating which 

factors are influencing the cognitive state of the workers’ employed on manual 

assembly tasks. 

An important notion is that the multimodal framework presented in the 

Chapter 5 consists of physiological sensors (electroencephalography (EEG), galvanic 

skin response (GSR) and heart rate (HR) sensor), MoCap sensors (Kinect and Leap 

motion) and recording the reaction times (RTs) as a behavioral modality. However, for 

the aim of present dissertation, only the results for the EEG, Kinect and RTs signal 

modalities were processed and the results from these studies will be presented and 

discussed. 

1.2 Theoretical background 

In order to provide objective parameters of workers’ cognitive state Parasuraman 

(2003) proposed a novel path in ergonomics research, which was tentatively named 

neuroergonomics (Parasuraman, 2003). The main objective of neuroergonomics is the 

objective assessment of how the brain carries out every day and complex tasks in 

naturalistic work environments (Parasuraman 2003; Mehta and Parasuraman 

2013a). In its essence, the neuroergonomics is able to provide precise analytical 

parameters depending on the work efficiency of individuals, by directly investigating 

relationship between neural and behavioral activity (Fafrovicz and Marek 2007). In 

this way, unreliable user state evaluation based on theoretical constructs, which are 

mostly describing cognitive states of the workers related to the task execution, can 

be avoided (Fafrovicz and Marek 2007).  
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Widely used technique for neuroergonomics studies was functional near 

infrared spectroscopy (fNIRS), mainly due to its high mobility and low cost. fNIRS has 

been successfully applied for objective measurement of mental workload for spatial 

orientation and for studying the mental fatigue, and attention of the operators (Ayaz 

et al., 2011; Mehta and Parasuraman, 2013b; Li et al., 2009), etc. However, fNIRS 

provide indirect metabolic indicators of neural activity and it has low temporal 

resolution (Mehta and Parasuraman 2013). On the other hand, techniques for direct 

measurement of neural activity that provide high temporal resolution, EEG and event 

related potentials (ERPs), were moderately mobile and the most of the research was 

confined in the laboratory space or simulators, thus limiting the usefulness of such 

a measurements in neuroergonomics research (Mehta and Parasuraman 2013a; Fu 

and Parasuraman 2006). However, as technology advanced EEG became increasingly 

mobile and eventually wearable, providing possibility to directly observe neural 

activity in applied environments (Wascher et al., 2014; Mijović et al., 2014).  

EEG provides the possibility to both timely and objectively detect the critical 

behavior of humans (e.g. drops in attention, error, etc.) and it has been confirmed as 

a reliable tool in estimating ones' cognitive state (Klimesch et al., 1999; Luck, et al., 

2000; Murata et al., 2005; Yamada 1998). Analysis of the ERPs, extracted from 

continuous EEG recording, represents commonly employed method in evaluating 

ones’ neural activity (Hohnsbein et al., 1998). Picton et al. (2000) defined ERPs as 

‘voltage fluctuations that are associated in time with certain physical or mental 

occurrence’. ERP components are defined in terms of polarity and latency with 

respect to a discrete stimulus, and these components reflect a number of specific 

perceptual, cognitive and motor processes (Brookhuis and De Waard 2010). In that 

sense, so-called P300 (also called P3) component is the positive deflection in terms of 

voltage, appearing around 300ms after the stimulus presentation (Gray et al., 2004; 

Polich and Kok 1995). The amplitude and latency of the P300 component are often 

used to identify the depth of cognitive information processing, being strongly related 

to the attention level (De Vos et al., 2014a; Johnson 1998; Polich 2007). Another EEG 

feature that is used for estimation of the level of cognitive engagement in the task is, 

so called, engagement index (EI, Prinzel et al. [2000]). EI is calculated as the ratio 

between fast going brain oscillations, which reflect the state of wakefulness and 

alertness state (so called beta waves) and the summation of waves of low frequency 
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that reflect the state of sleepiness and low alertness (so called alpha and theta waves), 

i.e. EI=β/(α+τ).    

Although Parasaruman (1990) proposed the idea of applying ERP recording in 

operational environments, in order to address various HFE problem areas, only very 

recent studies provided possibility of recording ERPs in applied environments by 

utilizing available wireless connections (Debener et al., 2012; De Vos et al., 2014a; 

Wascher et al., 2014). This finally allowed merging EEG with the guiding principle of 

neuroergonomics, and examination of how the brain carries out complex everyday 

work tasks in realistic environments (Parasaruman and Rizzo 2006). Present 

dissertation proposes a ‘new paradigm’ in ergonomics research through utilization of 

ERP measurement in naturalistic workplace environment, where manual assembly 

operation was simulated. The research presented in this dissertation is one of the 

first studies, which utilize a wireless 24-channel EEG recording for the ERP 

extraction in naturalistic environment (as it will be presented in Chapters 5, 6, 7, 8 

and 9). The main aim of the presented dissertation is the investigation of possibility 

of studying the attention of an assembly worker. As the main disadvantage of the 

EEG measurement, its immobility is now overcome, it is believed that its utilization 

in the real workplace environments will be ubiquitous in the years to come. 

 Another modality that can provide a continuous-like assessment of human 

attention level is a behavioral measure of the reaction times (RTs, [Larue et al., 2010; 

Sternberg 1969]). RT represents a time interval from the indicated start of operation 

(stimulation), until the moment of the action initiation and the main reason for wide 

usage of RT measurements is that they are easy to obtain and simple to interpret 

(Salthouse and Hedden 2002). However, the major drawback of experiments involving 

RT is that they usually consist of a stimulus followed by the response, without direct 

possibility to observe the mental processing that occurs between stimuli (Luck et al., 

2000; Young and Stanton 2007). 

Additionally neuroergonomics is concerned with the body movements, since 

the humans interacts with the systems through a physical body (Parasuraman and 

Rizzo, 2006). In fact, it was previously shown that the number of task unrelated 

movements is negatively correlated with the attention of a person (Roge et al., 2001). 

However, the study of Roge et al. (2001) quantified the task unrelated movements 
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using manual counting of these movements in a post hoc analysis. Therefore, this 

dissertation investigated the possibility for the automation of this analysis, with the 

usage of the modern MoCap sensors, by using the proposed concept of movement 

energy (ME) that is presented in Chapter 9 of this dissertation. In this way the 

estimation of cognitive state of a person could be investigated with MoCap sensors in 

a unobtrusive way. 

1.3 Main Hypotheses 

This dissertation is based on the following ground hypotheses: 

Hypothesis 1: 

Firstly, it will be investigated whether multiple signal modalities, that are 

heterogeneous in both type and sampling frequency, could be recorded 

simultaneously and synchronously in naturalistic work environment. If this prove 

possible, than an overall multimodal system framework (consisting of EEG, GSR, 

HR, Kinect and Leap Motion sensor) for the assessment of operators’ cognitive 

state will be presented. 

Hypothesis 2: 

Starting from the assumption that RTs and psychophysiological signals can 

objectively reflect the operators’ cognitive state, the hypothesis is that the RTs will 

be negatively correlated with the psychophysiological signals that reflects the 

attention of the operators’, i.e. the time needed for performing the simulated 

operation will be longer once the attention level, observed through 

psychophysiological signals, shows lower values.  

Hypothesis 3: 

Studies that are concerned with the relationship between RTs and 

psychophysiological signals are mainly conducted on the group level. Therefore, 

the third hypothesis is that, even if the second hypothesis shows to be valid at the 

group level, the interindividual differences between the participants can influence 

the consistency of the results on the individual level. If the results shows that 

there is no consistent correlation between the RTs and psychophysiological 
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signals on the individual level, these results should be further investigated, the 

advantages and disadvantages of both RTs and psychophysiological signals 

should be considered, and the most reliable tool should be adopted for further 

studies of the workers’ cognitive state. An important notion is that RTs are more 

sensitive to strategic responding in comparison to more automated responding 

that participants cannot control, such as ERPs (that are considered to be the ‘21st 

century RTs’). 

Hypothesis 4: 

It is hypothesized that the attention level of the operators’’ can be enhanced 

through introduction of frequent micro-breaks. In order to confirm the hypothesis 

the attention of the participants in the study will be assessed prior and 

immediately after the micro-break period, through investigation of the P300 

component’s amplitude. 

Hypothesis 5: 

Another hypothesis that was under investigation is whether the instructed hand 

responding can enhance the attention level of an assembly worker. In order to test 

this hypothesis, the participants were imposed to two distinct task conditions. In 

the first condition, the participants could chose to initiate the assembly operation 

with whichever hand they prefer, while in the second condition, the participants 

were requested to initiate the action with the hand that correspond to the direction 

of the arrow that appeared on the display in front of them. 

Hypothesis 6: 

Finally, as already reported in the Section 1.2. the quantity of task unrelated 

movements is negatively correlated with the human attention. Therefore, this 

hypothesis tested whether this information can be automatically obtained 

through introduction of the methodology that is based on movement energy (ME). 

In order to test this hypothesis, the body movements will be recorded with the 

Kinect sensor and ME will be calculated. Finally, the ME will be correlated with 

the attention-related modalities obtained from the EEG recordings. 
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1.4 Methods 

Firstly, the replicated workplace was created, in which the participants in the study 

simulated manual assembly operation. Further, the participants were equipped with 

the wearable sensor network, which consists of sensors for recording physiological 

sensors (EEG, GSR and HRV), and the sensors for recording the movements of the 

participants, namely Kinect and Leap Motion sensor. Upon creation of sensing 

environment, the data were recorded and processed using following methodology: 

 EEG signal processing was performed using EEGlab toolbox (Delorme and 

Makeig, 2004) and Matlab 2013b (Mathworks Inc., Natick, MA). 

 For the analysis of the data obtained from the Kinect sensor the Matlab 2013b 

was used. 

 The analysis of the data obtained from the GSR sensor is meant to be 

performed in Matlab 2013b and the LedaLab (http://www.ledalab.de, plug-in 

for the Matlab software) 

 The analysis of the heart rate variability (HRV) is meant to be performed in 

Matlab, 2013b 

 The statistical analysis of all data was performed in the IBM SPSS v.20 

1.5 Expected Results 

The following results are expected upon accomplishment of the research conducted 

during the doctoral studies: 

1) An overall framework for multimodal synchronous recording and analysis of 

psychophysiological and motion signals for the aim of objective assessment of 

operator’s cognitive state will be provided.  

2) The methodology for the objective assessment of operator’s cognitive state, 

using wearable EEG will be provided. 

3) Guidelines for the manual assembly task design will be provided, with the aim 

of enhancing the operators’ level of attention. 

4) The methodology for quantification of the task unrelated movements, using 

the movement energy will be provided 

http://www.ledalab.de/
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5) Reaching above-mentioned goals, it is aimed in reducing the human errors in 

production lines, more closely in the assembly operations. Finally, timely 

detection of the drops in attention and deviations in cognitive state of the 

workers should lead to reduction of work-related injuries, economy loss, 

influence of human factors in industrial accidents, etc., which should 

ultimately lead to improvement of the workers’ overall well-being in industrial 

environments.  

1.6 Chapter-by-Chapter Overview 

Chapter 1 briefly discuss the shortcomings of existing ergonomics methods for 

objective assessment of the operators’ cognitive state in workplace environments. It 

further briefly discuss about the advantages of neuroergonomics methods over 

classical ergonomics approaches. This chapter outlines the importance of objective 

measurement of operators’ cognitive state and it provides the outline of the main 

objectives and main objectives of the present dissertation. It further provides the brief 

theoretical background of the present work and ground hypotheses. Further, the 

used methodology for the data processing and statistical analysis was briefly 

presented. 

In Chapter 2, a brief overview of scientific field of ergonomics is presented. Further, 

four main domains of ergonomics research are presented and the advantages and 

disadvantages of each domain are discussed. 

Chapter 3 introduces the Neuroergonomics as a science discipline and the benefits 

of using neuroergonomics over solely ergonomics principles. Since the 

neuroergonomics relies on neuroimaging techniques, an overview of neuroimaging 

techniques that can be used for the neuroergonomics studies is provided. Further, 

the advantages and disadvantages of each methods for recording the brain activity in 

naturalistic environment are discussed. As the EEG was used in studies that 

constitute the present dissertation, special focus was on EEG and wearable EEG 

studies that were conducted with the aim of investigating the cognitive state of the 

operators. Moreover, since other physiological sensors (other than neuroimaging 

techniques) can be used for estimating the cognitive state of the operators’, HR and 

GSR sensor are also introduced and literature review of studies that used these 
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sensors in ergonomics studies is presented. Finally, studies that used multimodal 

approach, combining EEG, GSR and HR modalities were reviewed and benefit of 

using such recordings was outlined. 

In Chapter 4, a literature review of using the MoCap technology for ergonomics 

studies was provided. The focus was on recently available consumer devices that uses 

structured light technology and thus does not require external markers for reliable 

motion tracking of a person. Finally, utilizing the MoCap technology for the aim of 

assessing the cognitive state of the workers’ was proposed, which is based on 

automated quantification of task unrelated movements. 

General methodology that was used in experimental studies, which were conducted 

for the aim of present dissertation, is provided in Chapter 5. This chapter begins with 

the introduction of the concept of the implicit human–computer interaction (HCI) and 

its possible application for cognition-aware computing in industrial settings. Further, 

a workplace replica is presented, where the participants in experimental studies 

simulated the manual assembly operations. In addition, the sensors used in the 

studies are presented, together with their technical specifications. Finally, the overall 

system architecture of the multimodal system for estimating the operators’ cognitive 

state is presented and discussed. 

Chapters 6, 7, 8 and 9 are actual experimental studies that were conducted at the 

Department of production engineering (Faculty of Engineering, University of 

Kragujevac) as part of present dissertation. 

An experimental study in which it was investigated whether the introduction of 

frequent micro-breaks can have a positive influence on attention level is presented in 

Chapter 6. 

Chapter 7 is consisted of an experimental study in which it was investigated whether 

the attention level of an assembly worker can be enhanced if the he is conditioned 

with which hand he should start the manual assembly operation.  

In Chapter 8, the relationship between P300 component’s amplitude and RTs was 

investigated and a general framework for the future real-time attention monitoring of 

the operators’ attention is provided.  



 

 

11 

 

Chapter 9, presents an experimental study in which it was investigated whether the 

cognition-aware computing can be utilized in industrial environments. For that aim, 

a multimodal study, which consisted of EEG and Kinect sensor, was conducted. The 

main objective was to present the concept of ME and to investigate the correlation 

between P300 amplitude, EI and ME. 

Finally, general conclusions from all experimental studies is presented in Chapter 10 

and the directions of future studies are discussed.  

Graphical representation of the chapter-by-chapter overview is presented on Figure 

1-1. 
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Figure 1-1: Graphical representation of the chapter-by-chapter overview of the present 

dissertation 
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2. Human Factors and Ergonomics (HF/E) 

Ergonomics is the science discipline which studies the interaction between humans 

and other elements of a system (Salvendy, 2012), and if successfully applied, it can 

prevent accidents and improve overall safety and health in industrial environments 

(Imada 1990). The origin of word ergonomics comes from the Greek “Ergon”, which 

means work and “Nomos”, which means law. Therefore, ergonomics is considered as 

the science of work (Cañas et al., 2011; Salvendy 2102). Another term that is 

synonymously and interchangeably used with ergonomics is Human Factors and 

Ergonomics (HF/E, [Salvendy, 2012]). 

HF/E is independent discipline of human-artifact interactions (Salvendy, 2012). It is 

multidisciplinary science, which utilizes and consolidate knowledge from diverse 

science disciplines including engineering, design, technology and management of 

human-compatible systems and technology, while taking into account variety of 

natural and artificial products, processes, living and working environments 

(Kawrowski, 2005). Steaming from its interdisciplinary nature there is no unique 

definition of HF/E, rather a large number of definitions were previously reported in 

the literature (Wogalter et al., 1998). Probably the most concise definition was 

provided by Dempsey et al. (2000): “Ergonomics is the design and engineering of 

human-machine systems for the purpose of enhancing human performance”. As such, 

HF/E is concerned with the design and evaluation of jobs, tasks, environments, 

products and system, while it tends to create compatibility of these with the abilities, 

needs and limitations of people (Salvendy, 2012).  

2.1 HF/E Domains 

Although HF/E has very comprehensive scope and extensive subject of interests, four 

main domains of application, which are crucial for investigating the interaction 

between humans and socio-technical systems, can be recognized nowadays (Stanton 

et al., 2004; Cañas et al., 2011). These are: physical ergonomics, cognitive 

ergonomics, organizational ergonomics and recently emerged discipline of 

psychophysiological and neuroergonomics domain. 
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2.1.1 Physical Ergonomics Domain 

The use of physical ergonomics to assess how work is done is one of the most studied 

domain in HF/E studies, mainly because many aspects of industrial work are 

physical in nature (Stanton et al., 2004; Vignais et al., 2013), and it is commonly 

referred to as ‘classical ergonomics’ (Hollangel, 1997). Physical Ergonomics is 

concerned with anatomical, anthropometric, biomechanical and physiological 

parameters of workers (Cañas et al., 2011). Physical ergonomics issues include 

working postures, materials handling, repetitive movements, work-related 

musculoskeletal disorders (MSDs), workplace layout, safety and health (IEA, 2015). 

The main aim of physical ergonomics is the improvement of musculoskeletal health 

at work (Vieira and Kumar, 2004).  

Exposure to risk factors for work-related MSDs is usually assessed using 

methodologies, which can be divided into self-reports, observational methods and 

instrument-based (called Direct) methods (Vignais et al., 2013; Diego-Mas and 

Alcaide-Marzal 2013).  

Self-reports are usually used to quantify discomfort of the workers, since presently 

the methodology for direct observation of discomfort or objective measurements does 

not exists (Stanton, 2004). Self-reports include questionnaires, work diaries and 

interviews. As such, they are highly subjective and unreliable, because the 

interpreted results depend on both the worker’s literacy and on the experience of the 

experimenter (Vignais, 2013). 

Observational methods are based on direct observation of the workers during the 

course of their operation. The main goal of observational methods is to assess 

worker’s behavior on predefined sheets, e.g. Rapid Upper Limb Assessment (RULA) 

sheets, by either on field observation or by videotaping workers and then conducting 

analysis during replying videos (Vignais, 2013). The advantage of these methods is 

that they are straightforward to use, applicable to wide range of working operations 

and relatively low cos. However, drawback is that the data collection systems are 

inaccurate and provide rather broad results (Diego-Mas and Alcaide-Marzal, 2013). 

Additionally, the presence of the observer during the work routine can influence can 

lead to higher performance of the workers, due to Hawthorne effect (Adair, 1984). 
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Instrument-based or direct measurement methods are usually conducted by sensors 

that are attached to the recording subject, with the aim of objective measurements of 

the workers’ activities (Stiefmeier et al., 2008; Diego-Mas and Alcaide-Marzal 2013). 

These kind of measurements are preferred, since the data acquisition is accurate. 

However, it was argued that these measurements are not suitable for use in real-

work situation (Diego-Mas and Alcaide-Marzal 2013) and that the recording 

equipment is costly (Trask and Mathiassen, 2012). Nevertheless, Stiefmeier et al. 

(2008) presented the case study in automotive industry, while workers were wearing 

the jacket equipped with Internal Measurement Units (IMUs) and they reported no 

discomfort during the regular operation. Moreover, with the recent technological 

advancement and development that relies on structured light technology (Salvi et al., 

2004) the direct measurements are possible without the need for workers’ to wear 

recording sensors. Additionally, with the introduction of the e.g. Microsoft Kinect, the 

costs of such a systems drastically decreased. Therefore, nowadays it is possible to 

conduct direct observation methods in work environments at relatively low cost, while 

no posing discomfort to the workers (Dutta, 2012).  

2.1.2 Organizational Ergonomics (Macroergonomics) Domain 

Organizational ergonomics (also called macroergonomics) domain is concerned with 

the overall design of work systems (Stanton et al., 2004; Hendrick and Kleiner, 2005). 

Organizational ergonomics deals with the optimization of sociotechnical systems, 

including their organizational structure, policies, and processes (IEA, 2015). It 

emerged as an ergonomics domain back in the 1978, and since then there has been 

increased interest of practitioners and researchers in studying the human 

organizational factors (Kleiner, 2008).  

In the early years of the HF/E, the industrial accidents were attributed either to 

failure of technology and latter to the human error (Gordon 1996). However, the 

accident at the Piper Alpha, which received many research interests, showed 

dependence of the performance of complex socio-technical systems on technical, 

human, social, organizational, managerial and environmental elements (Pate-Cornell 

1993; Gordon 1996; Mearns et al., 2001). The Piper Alpha disaster increased 

awareness for both practitioners and scientists that these factors can be important 
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co-contributors to incidents which could potentially lead to a catastrophic event 

(Gordon 1996), thus emphasizing the need for organizational ergonomics. 

Organizational ergonomics mainly promotes the safety climate as one of the most 

important precondition for safe working environment (Zohar, 1980; Gordon, 1996). 

In the seminal paper of Zohar (1980), it was found that the strong management 

commitment to the safety leads to safer production. That is, he reported that in low 

accident companies the top management was personally involved in safety activities 

on a routine basis (Zohar, 1990). However, the underlying HF/E factors that affect 

safety can be defined as organizational, individual and group factors (Gordon, 1996) 

and therefore, it is important to study interaction between all these factors in order 

to create the safety climate in industry (Bentley and Tappin, 2010).  

It was proposed that workers’ attitudes and perception to safety could be measured 

using safety climate questioners and that safety-related behaviors could be evaluated 

using checklists, while the organization safety could be evaluated through audits or 

analyzing the documentation of the industrial (companies) safety management 

system (Cooper, 2000). However, these measurements related to the individual 

factors are qualitative and use the overt performance measurement, thus being 

unreliable (Parasuraman, 2003). For the aim of objective assessment of factors that 

are influencing the cognition and perception of the workers, the scientific domains of 

cognitive ergonomics and neuroergonomics emerged.  

2.1.3 Cognitive Ergonomics Domain 

Cognitive ergonomics domain is concerned with studying cognitive processes at work, 

with an emphasis on an understanding of the situation and on supporting reliable 

and effective performance (Cañas et al., 2011). It is concerned with mental processes, 

such as perception, memory, reasoning, and motor response, as they affect 

interactions among humans and other elements of a system (IEA, 2015). While 

‘classical ergonomics’ is concerned with the quality of working from the physical 

ergonomics point of view, the cognitive ergonomics is trying to describe how the work 

affects the mind, as well as to describe how the mind affect the work (Hollangel, 1997). 

In that sense, it can be said that cognitive ergonomics represents the merging of 

‘classical ergonomics’ with cognitive psychology. 
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The ubiquitous implementation of automated processes have shifted the 

responsibility of the workers from physical activities to the ones that requires the 

ability of workers to sustain attention over prolonged period of time (Hollangel, 1997), 

i.e. humans are nowadays shifting their role from active controllers to the one of 

system supervisors (Warm et al., 2008). Therefore, instead of physical skills, workers 

are responsible for planning and reasoning and they are required to possess problem-

solving skills (Hollangel, 1997). 

Studies of risks in workplace are traditionally divided into two directions. On the one 

hand there are post-analyzes, once when accident has already happen, thus studying 

the human error (Reason 1990). On the other hand, there are studies that are 

concerned with the assessment of the risk, specifically the possibility of human 

erroneous actions, which is known as the human reliability assessment (Hollangel, 

1997). The latter can be assumed as the milestone of the cognitive ergonomics, since 

it is focused on how the workers think, rather than how they act, i.e. how workers 

maintain control over their work, since if the control fails, then system enters into a 

state of loss control that could further lead to unwanted dangerous situations 

(Hollangel, 1997).  

Another approach used in cognitive ergonomics is cognitive task analysis (CTA). CTA 

represents the extension of traditional task analysis techniques, with the aim to 

assess information about the knowledge, thought processes and goal structures that 

underlie overt task performance (Chipman et al., 2000). CTA methods mainly focus 

on describing and representing the cognitive elements that underlie goal generation, 

decision making, judgments, etc. In its essence, CTA uses a variety of interview and 

observation strategies to capture a description of the knowledge that experts use to 

perform complex tasks (Clark et al., 2008). As such, these methods are usually 

unreliable, the analyses are usually carried in the initial phase of process design (off-

line), and there is no possibility for the real-time applications of such methodologies.  

2.1.4 Psychophysiology and Neuroergonomics Domain 

The major drawbacks of the beforehand mentioned HF/E domains is that all the 

analyses of the workers’ cognitive state are qualitative and they utilize the overt 

performance measurements, which are usually conducted in post hoc analysis. In 

order to overcome these drawbacks and to provide objective measures of the workers 
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cognitive state the psychophysiological methods, which were initially used solely in 

the medical field, were recognized for usage in HF/E studies (Stanton, 2004). 

Andreassi (2013) proposed one of the definitions of psychophysiology: 

“Psychophysiology is defined as the study of relation between psychological 

manipulation and resulting psychophysiological responses, measured in the living 

organisms, to promote understanding of the mental and bodily processes”. 

Psychophysiological methods are divided into the ones that record the activity of 

autonomic nervous system (ANS) and the ones that are able to record the activity of 

the central nervous system (CNS). The former group consist of measurement of 

galvanic skin response (GSR), heart rate variability (HRV), etc. The latter mainly 

consists of neuroimaging methods, such as electroencephalography (EEG), functional 

magnetic resonance (fMRI), etc. The main difference between ANS and CNS is that 

the actions of the ANS are not under direct voluntary control of humans (Janig, 1989), 

while the CNS is related to behavior and thus it can be related to the voluntary control 

of humans (Cacioppo et al, 2007). 

The overall goal of applying psychophysiological methods in HF/E studies is to 

improve the design of a system with regard to system effectiveness, as well to workers’ 

well-being (Trimel et al., 2009). The advantages of psychophysiological methods, in 

comparison to previously mentioned HF/E domains are twofold: they are objective 

and they can be acquired and processed in real time (Trimmel et al., 2009). 

Additionally, the psychophysiological measurements enables the detection of covert 

reactions to task environments, which are not possible to observe with the overt 

performance measurements by HF/E professionals (Parasuraman, 2003), making 

more holistic evaluations of particular design environments possible (Trimmel and 

Poelzl 2006). 

Recently, a novel path in ergonomics emerged, which is mainly concerned with 

applying psychophysiological measurements for observation of the CNS activity 

during the regular work operations, i.e. which is interested in how brain carries out 

everyday tasks in complex environments (Mehta and Parasuraman, 2013a). This 

novel direction was defined as neuroergonomics (Parasuraman, 2003). The benefits 

of neuroergonomics methods is that they provide insights in the brain functioning 
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and not only in the physiological response of the ANS. Thus, it provides the possibility 

for direct linking of the brain dynamics to the behavioral responses of the workers. 

The present dissertation mainly focuses on neuroergonomics studies, by utilizing 

wireless EEG technology for investigation of brain dynamics during simulated work. 

Further, the multimodal recording of brain dynamics and psychophysiological 

measurements was performed for better understanding of relationship between ANS 

and CNS activity. Finally, the motion capture sensors were also applied, mainly in 

order to relate the behavioral modalities with the physiological signals. All of these 

will be discussed in detail in further chapters. 
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3. Neuroergonomics 

Parasuraman (2003) pinpointed the importance of studying the human brain 

processes while executing everyday complex tasks in naturalistic environments, 

through the new direction in human factors and ergonomics (HF/E) research. The 

‘official’ proclamation of Neuroergonomics was in the year of 2003, when Taylor & 

Francis group published a special issue of ‘Theoretical Issues in Ergonomics Science’ 

that was entirely devoted to neuroergonomics and where the majority of articles were 

mainly discussing the newly emerged science sub-discipline of ergonomics. Although 

Parasuraman and Wilson (2008) modestly stated that neuroergonomics should not 

be thought of as revolutionary, but rather as another step in HFE research, the 

growing body of neuroergonomics research refuted this statement. In fact, ever 

advancing technology has facilitated neuroergonomics research and nowadays, only 

twelve years from its inception, it has become one of the principal directions in HFE 

research.   

Neuroergonomics is defined as the study of the human brain in relation to 

performance at work and in other naturalistic settings (Parasuraman 2003; 

Parasuraman and Rizzo 2006; Parasuraman 2011; Mehta and Parasuraman 2013a). 

It is interdisciplinary area of research that integrates scientific disciplines of HF/E 

and neuroscience while attempting to exploit the benefits of each (Parasuraman and 

Rizzo 2006). The goal of neuroergonomics is not solely to study brain dynamics, which 

is in the field of neuroscience, but to put the brain dynamics in the context of human 

cognition and behavior at work and other everyday settings (Parasuraman and Rizzo, 

2006). Moreover, since the human brain interacts with the environment over physical 

body, neuroergonomics is correspondingly concerned with the neural basis of 

physical performance, e.g. moving and grasping objects, etc. (Parasuraman and 

Rizzo, 2006).  

Traditionally, ergonomics research and practice has not considered neuroscience or 

findings concerning brain mechanisms that underlies human perceptual, cognitive, 

affective and motor processes (Parasuraman, 2003). This is not surprising, since the 

HF/E has its roots in a psychology of 1940s that was firmly in the behaviorist camp 

(Parasuraman, 2003), where researchers were using solely the simplified stimulus-

response (S-R) approach, but also due to slow shifts from behavioral to cognitive 
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approach in psychology itself. More recently, however the ergonomics was influenced 

by the cognitive psychology, but still the neuroscience continued to be ignored 

(Parasuraman, 2003). One of the main reasons for this is that primary interest of 

ergonomics is assessment of broad psychological constructs and high-level cognitive 

functions, which are still not likely to be effectively mapped in the neuronal network 

of brain functioning (Sarter and Sarter, 2003). For that reason, the focus on ‘large’ 

cognitive constructs still represents a major challenge for the neuroergonomics 

(Sarter and Sarter, 2003).  

Nevertheless, in the classic ergonomics perspective cognitive functions are mainly 

described through the correlation of various theoretical constructs that describe 

cognitive context (Hanckook and Szalma, 2003) and which are further used as 

elements for complementing the process of research and design (Fafrowicz and 

Marek, 2007). On the other hand, the neuroergonomics postulate the elimination of 

such theoretical constructs from research and design process and it focuses on 

examining the role of neural systems that are involved in execution of the work tasks, 

i.e. the neuroergonomics aims in investigating the limits of the efficiency of neural 

system in executing particular work task (Farowicz and Marek, 2007). As argued in 

work of Fafrowicz and Marek (2007), in the traditional ergonomics, mental, cognitive 

and emotional functions are observed through theoretical contstructs, which are 

defined by the psychologists, and the research is directed towards correlation 

between behavioral and hypothetic cognitive processes. Whereas from 

neuroergonomics perspective, the functions of covert neural structures are the main 

subjects of the research and they are becoming the point of departure (Fafrowicz and 

Marek 2007). Figure 3-1 graphically depicts the main differences between traditional 

ergonomics and neuroergonomics approach. 

While trying to link brain dynamics with the ever advancing technology at work, 

neuroergonomics has two key goals: (1) to utilize present and evolving knowledge of 

human performance and brain function in order to design technologies and optimize 

work environments, with the ultimate aim of creation of the safer work conditions; 

and (2) to yield necessary knowledge of brain function in relation to human 

performance in naturalistic workplace environments (Parasuraman, 2003). In order 

to achieve these goals, neuroergonomics provides the possibility to enrich the HF/E 

research by providing precise analytical parameters of brain functioning and behavior 
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in naturalistic settings (Parasuraman 2011; Mehta and Parasuraman 2013a), rather 

than evaluating human performance solely through unreliable subjective 

measurements (Parasuraman 2003; Parasuraman and Rizzo 2006). Ultimately, 

understanding brain processes in naturalistic environments can lead to improvement 

of existing industrial processes design and to creation of safer and more efficient 

working conditions (Parasuraman 2003), consequently improving the operators’ 

overall wellbeing. 

 

Figure 3-1: Traditional ergonomics approach (left image); and neuroergonomics approach to 

research and design in ergonomics (right image – Figure adopted from: Fafrowicz and Marek, 

2007) 

So far, neuroergonomics had significant success in evaluating brain activity in its 

interaction with automated systems, through the studies of mental workload, dual-

task performance (Ayaz et al., 2013) and operators’ vigilance (Warm et al., 2008). 

Additionally, it went a step further with the development of state-of-the-art 

neuroadaptive systems facilitating the mutual interaction between an automated 

system and operators, in the sense that both human and the system can initiate the 

change in the level of automation when needed (Scerbo 2006; Mehta and 

Parasuraman 2013a). On the one hand this trend is understandable as industry, for 
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over several decades, has tried to reach the ‘lights-out manufacturing’ concept 

(Tompkins et al., 2010), i.e. completely automated factories, which can operate 

without the direct presence of human operators in the production processes. In that 

case, human supervisory control of automated systems becomes essential (Sheridan 

and Parasuraman 2005), as human operators would be solely responsible for 

controlling the automated production systems (Warm et al., 2008).  Although 

automation is becoming ubiquitous in industry and everyday life (Parasuraman et 

al., 2008), the ‘lights-out’ concept is still rather futuristic and there is still a need for 

human manual operations in the production processes. This is especially notable in 

assembly tasks and processes where costs, related to process automation, are 

generally not justifiable (Tang et al., 2003).  

For these reasons, it is evident that neuroergonomics studies should pay additional 

attention to more traditional workplaces, through investigation of concurrent 

physical and cognitive work.  This approach has received far less attention in 

neuroergonomic studies (for review see Mehta and Parasuraman 2013a). For 

example, in the car manufacturing industries the majority of processes are 

automated, however human operators play a crucial role in the final car cockpit and 

interior assembly, i.e. final assembly (Michalos et al., 2010a). Typically, manual 

assembly tasks require a large number of repetitions and are monotonous in nature, 

thus leading to hypo-vigilance of operators (Spath et al., 2012). In turn, operators’ 

have difficulty in sustaining the desired level of attention during the task, and 

therefore, the risk of work-related injuries, material damage or even accidents is 

increased (Kletz, 2001). Therefore, employing existing neuroimaging techniques to 

understand the way the brain processes various stimuli in this class of tasks could 

be beneficial, as the task design could be optimized in such a way as to obtain and 

maintain sufficient operator attention, thereby avoiding possibly hazardous 

situations.  

3.1 Neuroimaging Techniques in Neuroergonomics 

An extensive review of neuroimaging techniques applicable to neuroergonomics 

research has been recently published by Mehta and Parasuraman (2013a). 

Neuroimaging techniques can be divided into two distinct groups according to their 

recording mechanisms (Figure 3-2): one that exploits techniques for indirect 
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metabolic indicators of neural activity (hemodynamic techniques), and the one that 

employs direct measurements of brain activity based on electromagnetic techniques 

(Mehta and Parasuraman 2013a). The former consists of techniques such as 

functional magnetic resonance imaging (fMRI), positron emission topography (PET) 

and functional near infrared spectroscopy (fNIRS). On the other hand, 

Electroencephalography (EEG) and therefrom derived event related potentials (ERPs) 

belong to the neuroimaging techniques that directly measure brain activity (Gramann 

et al., 2011; Mehta and Parasuraman 2013a). 

 

Figure 3-2: A comparison of neuroimaging methods utilized in neuroergonomics studies. 

Methods for direct observation of brain dynamics are depicted with red color, while the ones 

for indirect observation of brain processes (Blue). EEG – electroencephalography; ERP – Event-

Related Potential (ERP); MEG – Magnetoencephalography; fNIRS – functional Near Infrared 

Spectroscopy; PET – Positron Emission Tomography; fMRI – functional Magnetic Resonance 

Imaging; DTI – Diffusion Tensor Imaging (Figure adopted from Mehta and Parasuraman, 

2013a). 

The main distinction between neuroergonomics and neuroscience is that former aims 

in investigating the brain functioning in relation to work and therefore when 
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evaluating which neuroimaging method should be used for neuroergonomics study 

following three important criteria should be considered (Mehta and Parasuraman 

2013a): 

(1) -  Temporal resolution, 

(2) -  Spatial resolution, and 

(3) -  The degree of mobility 

The temporal and spatial resolutions presents the ability of the recording device to 

discriminate between two data points in time and space, respectively (Slavin and 

Bluemke, 2005), while the degree of mobility relates to the dimensions of the 

recording equipment and its usability for usage in naturalistic environments. 

Graphical representation of comparison of neuroimaging methods that are mostly 

utilized for neuroergonomics studies is depicted on Figure 2-2 and they are 

summarized in table 3-1 (Mehta and Parasuraman, 2013a). 

3.2 Hemodynamic Neuroimaging Techniques Applicable To 

Neuroergonomics 

3.2.1 Functional Magnetic Resonance Imaging (fMRI) and Positron 

Emission Tomography (PET) 

fMRI and PET belong to cerebral hemodynamic techniques that can provide valuable 

information on source locations of diverse neural activation patterns, which are 

associated with cognitive, motor and affective functions (Mehta and Parasuraman, 

2013a). fMRI is capable of noninvasive assessment of relative changes in cerebral 

oxygenation while a person is engaged in cognitive task (Parasuraman and Rizzo, 

2006). A brief description of working principle of fMRI was provided by Calhoun 

(2006) and here it will be summarized. fMRI relies on the fact that oxygenated blood 

has different magnetic properties than deoxygenated blood or surrounding tissues. 

This disparity of blood oxygenation causes the variation of magnetic resonance signal. 

Once the specific brain region increases in neural activity a small decrease of local 

oxygenated small pool, following which the cerebrovascular system responds by 

increasing the flow of oxygenated blood into that region for returning the oxygenated 

blood level back to normal. At this point however, the supply of oxygenated blood 
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exceeds the neural demand and therefore, the ratio of oxygenated to deoxygenated 

blood is altered. fMRI is able to acquire this blood oxygen level-dependent (BOLD) 

signal over the brain regions. Finally, the BOLD signal can be used to associate neural 

responses to performance of a cognitive tasks, which is measured and compared to 

baseline of resting state, or to another cognitive task that differs in cognitive task 

demand (Calhoun, 2006). On the other hand, PET uses injected radioactive tracers 

in order to measure the dependence of the blood flow related to neural response to 

stimuli (Mehta and Parasuraman, 2013a).  

Table 3-1: List of neuroimaging techniques applicable to Neuroergonomics (Adopted from 

Mehta and Parasuraman 2013) 

Method Abbreviation Measures/ 

Stimulates 

Mobility Cost Spatial 

Resolution 

Temporal 

Resolution 

Magnetic Resonance 

Imaging 

MRI Grey matter volume 
None High High NA 

Positron Emission 

Tomography  

PET Blood flow and 

Oxygen consumption 

of glucose 

None High High NA 

Diffusion Tensor Imaging 
DTI White matter 

integrity 
None High High NA 

functional Magnetic 

Resonance Imaging 

fMRI Relative Blood 

Oxygenation 
None High High Low 

functional Near Infrared 

Spectroscopy 

fNIRS Oxyhemoglobin and 

deoxyhemoglobin 
High Low Moderate Low 

Transcranial Doppler 

Sonography 

TCDS Cerebral blood flow 

velocity 
Moderate Low Low Low 

Electroencephalography 

EEG Summated post-

synaptic  electrical 

activity 

High Low Low High 

Event Related Potential 

ERP Stimulus or 

response-related 

electrical activity 

High Low Low High 

Transcranial Magnetic 

Stimulation 

TMS Brain Activation or 

Inhibition 
Low Moderate High High 

Transcranial Direct 

Current Stimulation 

tDCS Brain Activation or 

Inhibition 
High Very low Low Low 

Both PET and fMRI possess very high spatial resolution, which allows scientists to 

allocate which brain regions are activated in particular cognitive tasks (Mijović et al., 

2012). Thus, they were successfully applied and have had important impact in 

advancing knowledge on brain functions and mechanisms during relatively simple 

and static cognitive and motor tasks (Mehta and Parasuraman, 2013a; Gramann et 

al., 2014).  
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PET and fMRI were already successfully applied for investigating the brain dynamics 

during driving (e.g. Calhoun, 2006), in aviation sector (e.g. Cause et al., 2013), etc. 

However, important limitations of these methodologies is that have poor temporal 

resolution, mainly because hemodynamic response is a slow signal and each echo-

planar image is acquired every few seconds (Mijović et al., 2012). One of the 

possibilities to increase spatio-temporal resolution of such a recordings, 

neuroscience research started to focus on multimodal approaches. For that aim, 

recently a combination of EEG-fMRI modalities has been successfully integrated 

(Mijović et al., 2012; Mijović et al., 2013). Although this intervention increased the 

precision of such systems, one of the limitations is that precise signal acquisition 

requires that participants are lying in the supine position in noisy scanners (Mehta 

and Parasuraman, 2013a). The first problem of such a recording is that 

hemodynamics is altered in lying compared to the standing position (Raz et al., 2005). 

Additionally, the recording equipment is of big dimensions and therefore the mobility 

of these systems is severely limited, which restricts synchronized brain-body 

measurements in naturalistic conditions (Maekig et al., 2009). Finally, the 

assumption that brain activity, which is measured in static position and inside the 

noisy scanners, reflects a general principle of brain dynamics during cognitive 

processes is rather inappropriate (Gramann et al., 2011).  

3.2.2 Functional Near infrared Spectroscopy (fNIRS) 

For above mentioned reasons, scientists adopted neuroimaging methods that offers 

better mobility features, for the aim of investigating the brain dynamics in everyday 

settings (Mehta and Parasuraman 2013a; Gramann 2011; Gramann 2014). From the 

group of techniques that measure brain hemodynamics, fNIRS remains the single 

convenient technique for the neuroergonomics research in naturalistic setting due to 

being lightweight and wearable (Ayaz et al., 2010; Ayaz et al., 2012; Mehta and 

Parasuraman 2013b). 

fNIRS is relatively novel methodology that is used in functional brain-imaging studies. 

fNIRS works on similar principle as fMRI and PET, but it possess lower spatial 

resolution than these two methods (Mehta and Parasuraman, 2013b). It is 

noninvasive neuroimaging technique, which utilizes specific light wavelengths that 

are introduced through scalp surface in order to enable continuous measurement of 
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alteration in the relative ratios of deoxygenated to oxygenated hemoglobin in the 

capillary beds during brain activity (Izzetoglu et al., 2005). Oxygenated and 

deoxygenated blood can be contrasted by their optical absorption properties, which 

allows fNIRS to detect the level of these parameters in response to brain activity. The 

advantage of fNIRS over PET and fMRI is that it is small sensor that can be mounted 

on participants’ head (Gramann et al., 2011). Thus, it can be utilized for both static 

and dynamic motor movements, without creating the undesired movement artifacts 

(Izzetoglu et al., 2005; Perrey, 2008; Gramann et al., 2011).  

fNIRS has so far been successfully applied for objective measurement of mental 

workload within air-traffic controllers (Ayaz et al., 2011; Ayaz et al., 2012), for spatial 

orientation (Ayaz et al., 2011), studying the mental fatigue (Mehta and Parasuraman, 

2013b), attention (Li et al., 2009), dual working memory skill (Ayaz, 2013), and other 

neuroergonomics studies. However, one of the limitations of the fNIRS studies it that 

their focus is mainly on prefrontal cortex, which raises the question whether 

investigation of only one brain region can provide enough insight on overall brain 

dynamics (Derosiere et al., 2013). Another important limitation for application of 

fNIRS in dynamic environments is that hemoglobin concentration dynamics are slow 

and therefore it limits the temporal resolution of fNIRS in the order of several seconds 

(Gramann et al., 2011; Irani et al., 2007). The former limitation limits the usage of 

the fNIRS for studying the brain dynamics of goal-directed movements and fast 

embodied cognitive processes, which are initiated in fractions of seconds (Gramann 

et al., 2011).  

As stated by Gramann et al. (2011), for investigation of sub-second brain processes 

the neuroimaging technique has to have very good temporal resolution based on the 

direct investigation of brain processes. Two widely employed methods are EEG and 

MEG. However, the MEG is still contained solely to laboratory conditions due to the 

size of the recording equipment (Mehta and Parasuraman, 2013a), thus leaving EEG 

as unique method for investigating brain dynamics that follows participants’ free 

movements (Gramann et al., 2011). 
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3.3 Electroencephalography (EEG) 

German scientist Hans Bergner introduced the first human EEG signal in 1924 

(Berger, 1929; Sanei and Chambers, 2013). Berger placed one electrode over forehead 

and one over the occipital cortex and has recorded the rhythmic activity at 

approximately 10Hz, which is known today as the alpha waves (Pizzagalli, 2007). 

Berger further proposed that the periodic fluctuations of the human EEG may be 

related to mental processes, e.g. arousal, memory, etc. (Pizzagalli, 2007). Ever since 

the EEG has been widely used for measuring the electrical brain activity and it has 

been recognized as the mostly used tool in clinical and experimental neuroimaging, 

but also in neuroergonomics studies (Gevins and Smith, 2006). 

3.3.1 Electrical brain activity  

In this section, a brief background on electrical brain activity will be provided, mainly 

based on the following previous published works (Pizzagalli, 2007; De Vos, 2009; 

Vanderperren, 2011; Sanei and Chambers, 2013).  

A Neuron (Figure 3-3), which consists of a cell body, dendrites and an axon, is an 

electrically excitable cell that processes and transmits information through electrical 

and chemical signals. Neurons are electrically polarized in a way that their interior is 

negatively charged with respect to the outside cell. The main reason for this is 

unequal distribution of sodium (Na+), potassium (K+), and negatively charged ion 

chlorine (Cl-) across the cell membrane. This potential difference called the resting 

potential and it has typical values around -70mV. When cells communicate with each 

other, they release chemicals known as neurotransmitters, at the synaptic terminals. 

The neurotransmitter travel from presynaptic to postsynaptic region that disturbs 

the resting potential, or a so called postsynaptic potential (PSP), by several microvolts 

and in duration of approximately 10 ms. Since every neuron possess many synapses 

that are connecting to numerous other neurons, the actual potential over a cell 

membrane is given by spatial and/or temporal summation of the PSPs. At this stage, 

both a depolarization (a decrease in negativity) and hyperpolarization (an increase in 

negativity) are possible. Depolarization of neuronal cell beyond critical level 

(threshold) generates an action potential (AP) that propagates along the axon. Once 

it arrives to the synapses, the AP can release neurotransmitters in order to 
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communicate with the next set of neurons. However, since the hyperpolarization is 

also possible, there are two distinct types of the PSPs: ones that depolarize and 

eventually lead to generation of AP (also called excitatory PSPs - EPSPs); and the ones 

that lead to suppression of Aps (known as inhibitory PSPs - IPSPs). 

 

Figure 3-3. The structure of neuron (Adopted from: 

https://en.wikipedia.org/wiki/Soma_(biology) ) 

 

3.3.2 EEG signals Measurement  

EEG signal measures the generation of currents that flow during synaptic excitations 

of the dendrites of numerous pyramidal neurons in the cerebral cortex (Sanei and 

Chambers, 2013), i.e. EEG measures the post-synaptic activity of the human brain. 

Once the neurons are activated, the synaptic currents are produced within dendrites, 

which further generates a magnetic field measurable with the electromyogram (EMG), 

while the secondary electrical field over scalp is measurable with the EEG systems 

(Sanei and Chambers, 2013). In other words, the neurons possess specific electrical 

properties that cause their activity to produce electrical field (Vanderperren, 2011). 

These electrical fields may be recorded from a short distances from the source (local 

https://en.wikipedia.org/wiki/Soma_(biology)
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field potentials - LFPs), from a large distance from the source (electrocorticografy - 

ECoG), or at the subjects scalp (EEG). 

The EEG measures the electrical communication between neurons as a function of 

time (De Vos, 2009). However, the occurring potential changes can only be detected 

if many neurons synchronously depolarize or hyperpolarize. Therefore, it is believed 

that the synchronous firing of many vertically oriented large pyramidal cells in the 

cortex specifically generates the EEG, since these neurons are aligned and amplify 

each other’s extracellular fields and the currents generated by these neurons 

summate in the extracellular space (De Vos, 2009; Vanderperren, 2011). Although 

the currents are attenuated through meningeal coverings, spinal fluind, skull and 

scalp, they can still be detected since the sum of the simultaneously active neuron’s 

potential is between 10 and 150 µV (De Vos, 2009). These signals can be measured 

by placing at least two electrodes on the scalp, which constitutes the EEG signal 

measurements (Figure 3-4; De Vos, 2009; Vanderperren 2011; Sanei and Chambers, 

2013). 

 

Figure 3-4: The sum of electrical brain potential recorded from two-electrodes placed on the 

scalp (Addopted from De Vos, 2009) 

Berger introduced the two-electrode system for measuring the EEG activity, however 

nowadays, these systems improved and there is a recommendation that EEG should 

be measured with at least 24-channel EEG (Nuwer et al., 1998). Since the localization 

of the specific brain activity is of great importance, there is a general recommendation 
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that the recording electrodes should be placed on well-defined positions on the 

human scalp, by following the international 10-20 system (Nuwer et al., 1998). The 

10-20 system recommends electrode placement based on intersections at 10 or 20% 

intervals of distances between specific anatomic landmarks on the head (Figure 3-5). 

According to this system, the electrode positions are specified with a combination of 

two or three letters and/or digits. The first letter normally corresponds to the specific 

scalp region at which the specific electrode is located. As such, capital letter F 

indicates electrodes on the frontal lobe, T on the temporal lobe, O on the occipital 

lobe, P on the parietal. The letter C indicates the electrodes on the central line. For 

most electrodes, a second letter or a digit is added to this letter, e.g. FP represents a 

fronto-parietal region, etc. In addition, a letter Z is added for all electrodes on the 

midline and odd and even numbers for electrodes on the left and right hemisphere, 

respectively. For setting a larger number of electrodes, electrodes are equidistantly 

placed in between the above electrodes and the same naming approach is preserved 

(Vanderperren, 2011).  

 
Figure 3-5: Graphical representation of the international 10-20 system for the electrode 

placements in EEG recordings, seen from above (Image A) and side view (Inage B). Adopted 

from (Malmivuo, J., and Plonsey, 1995) 

In order to measure the potential differences between electrode sites on the scalp, 

one or several referenced electrodes needs to be used (De Vos, 2009; Vanderperren 
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2011; Sanei and Chambers, 2013). Mostly used reference systems are bipolar 

reference, the Laplacian derivation, the average reference and the linked-ears 

reference (De Vos, 2009). When using the average reference, the potentials on all 

recording sites are recorded with the average value of all electrodes. In linked-ears 

reference, the EEG signal is recorded with respect to the average potential on ear 

lobes. Both of these references are good for visualizing the widespread coherent 

waveforms, since these waveforms occur with similar amplitude and phase (De Vos, 

2009). When using bipolar and Laplacian montage, the EEG signals are obtained by 

subtracting neighboring electrode signals and they are mainly used for viewing highly 

localized activity over specific scalp area, since the usage of these methods filters out 

the widespread waveforms (De Vos, 2009). 

3.3.3 Brain Rhythms 

In the healthy adults, the amplitudes and frequencies of the brain rhythms change 

depending on the person’s cognitive state, e.g. arousal, vigilance, sleep, etc. (Sanei 

and Chambers, 2013). The brain rhythms are generally divided in frequency bands 

and are depicted on the Figure 3-6 (Sanei and Chambers, 2013): δ (delta: < 4 Hz), τ 

(theta: 4-7.5 Hz), α (alpha: 8-12), β (beta: 13-35 Hz) and γ (gamma: >35 Hz). 

Depending on the literature, the spans of the frequency bands can vary. However, 

this is not surprising since these bands are person specific, but also depends of the 

age. For that reason Klimesch (1999) proposed that for each subject, the frequency 

bands should be adjusted for alpha and theta windows, before further analysis. 

Nevertheless, generally, the above mentioned values are used, with a certain 

ambiguity, in variety of EEG studies.  

Delta waves are mainly observable in the deep sleep, however they could be 

observable also in the wakeful state (Sanei and Chambers, 2013). Theta waves are 

observable in the wakeful state and they can represent the consciousness slips 

towards drowsiness of a person (Sanei and Chambers, 2013). Moreover, theta waves 

are observed when a person is fallen into a light sleep (De Vos, 2009). Alpha waves 

indicate both a relaxed and awareness state, but without attention or concentration 

(Sanei and Chambers, 2013), i.e. they show that a person is awake, but it is not 

actively processing information (De Vos, 2009). Thus, the alpha waves are commonly 

observed when a person is relaxed but inattentive (De Vos, 2009). Beta waves are the 
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most prominent in the wake state when person is engaged in active thinking and 

solving complex problems. Moreover, beta is observable during attentive states and 

when a person is focused on the task (Sanei and Chambers, 2013). Gamma wave, 

also sometimes referred to as fast beta waves, are generally rare and rarely studied 

waves, and can be used for detection of certain brain functioning disorders (Sanei 

and Chambers, 2013). 

 

Figure 3-6: Graphical representation of the specific brain rhythm frequencies (Adopted from 

http://econtact.ca/14_2/ortiz_biofeedback.html) 

3.3.3.1 Engagement Index (EI) 

When assessing the cognitive state from EEG frequency domains one could use the 

basic index, which consists of solely calculating power ratios for each of the frequency 

http://econtact.ca/14_2/ortiz_biofeedback.html
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bands, or the ratio index that is derived from the ratio between power of frequency 

bands (Cheng and Hsu, 2011). Engagement index (EI) is a ratio index, derived from 

the EEG frequency bands and it represents how much is person cognitively engaged 

in the task, reflecting changes in alertness (Pope et al., 1995; Prinzel et al., 2000; 

Jacko, 2012; Laure et al., 2015). As mentioned in previous chapter, the low frequency 

waves are usually high in amplitude and are notable in the state of rest, relaxation, 

sleepiness, low alertness etc. On the other hand, the high frequency and low 

amplitude waves are reflecting the alert state, state of wakefulness, state of task 

engagement, etc. The EI represents the ratio between the high frequency waves (β), 

and the summation of the low frequency waves (α+θ), i.e. EI = β/(α+θ). Therefore, 

higher EI indicate the higher engagement of the person to the task, while the low 

values of EI indicate that person is not actively engaged with some aspect of the 

environment during the task (Jacko, 2012). An important notion is that one should 

be careful when using the EEG frequency analysis, since the continuous EEG signal 

can be contaminated with the recording artifacts, such as e.g. muscle artefacts ( 

prozafir and Mutulu, 2012). For that reason, it is important to ensure that all the 

artefacts, which are unrelated to brain dynamics, need to be removed from the signal 

prior to the EI calculation.    

3.3.4 Event-related Potentials (ERPs) 

Event-related Potentials (ERPs) can be recorded from the human scalp and extracted 

from the continuous ongoing EEG signal (Picton et al., 2000). ERPs emerged from the 

fact that the EEG signal in its raw form is a rough measure of the brain activity and 

in the initial years of EEG recordings it was very difficult to use it for assessment of 

specific neural processes (Luck, 2014). However, the EEG carries the neural 

responses that are associated with specific sensory, cognitive and motor events, and 

these responses can be extracted from the ongoing EEG by means of simple averaging 

and other more sophisticated techniques (Luck, 2014). These methods are necessary, 

since the ERPs are small in voltage (1-30 µV) relative to the ongoing EEG activity and 

EEG recording artifacts (Sanei and Chambers, 2013). Thus, the averaging techniques 

are used to increase signal-to-noise ratio (SNR), by canceling unrelated brain 

activities and recording artefacts (Luck, 2014).  The name Event-related potentials 

denotes that ERPs are EEG voltage fluctuations that are associated in time with some 

physical or mental occurrence, i.e. with specific event (Picton et al., 2000; Luck, 
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2014). Apart from using ERPs for assessing the patients’ various clinical conditions, 

over the past 40 years ERPs were recorded from healthy individuals for assessing 

various covert cognitive mechanisms, e.g. the mechanisms of attention (Luck et al., 

2000). 

In order to extract time-locked ERPs from the continuous EEG signal, the 

participants must be presented with stimulus, which can be auditory, visual, tactile, 

etc. Figure 3-7 depicts the segment of continuous EEG signal and time-locked periods 

of signal presentations and the duration of ERP waveforms, which can be used for 

further analysis (Luck et al., 2000). As can be seen on the Figure 3-7, the segment of 

EEG following each stimulus (or each response) is extracted from the EEG, and these 

segments are then lined up in time and averaged obtaining grand average (GA) ERP 

(as depicted on the lower-right corner of the Figure 3-7). As previously mentioned, 

the averaging suppress any brain activity that is unrelated to the stimulus to zero 

(assuming a large number of trials), and any brain activity that is consistently time-

locked to the stimulus will remain in the average (Luck et al., 2000). 
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Figure 3-7: The ERP extraction from the ongoing EEG. Image a: The participant is presented 

with the stimuli (1…N), while the ERP is being recorded; Image b: In order to isolate the ERP 

from the continuous EEG signal, the time-locked EEG segments following each stimulus are 

extracted and averaged with the aim of obtaining the GA ERP (Adopted from Luck, 2014). 

The resulting GA ERP waveform consists of several positive and negative deflections 

that are called ‘peaks,’ ‘waves,’ or ‘components,’ (Luck, 2014). The ERP components 

are typically named in the standardized fashion, in a way that first there is a capital 

letter P or N, indicating positive or negative going wave, followed by the number, 

which indicate the timing of the peak in milliseconds (Picton et al., 2000; Luck 2014). 

As such, e.g. P300 component presents the positive going wave that occurs around 

300 ms after the time-stamp of the presented stimuli. The sequence of components 

that are following a stimulus usually reflects the sequences of the neural processes 

that are triggered by the stimulus (Luck, 2014). The distinction between early and 

late components is that the former represents the early sensory processing, while the 

latter are representative of decision and response-related processing (Luck, 2014). 

Thus, the ERPs span a continuum between the exogenous potentials (i.e. obligatory 
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responses, which are influenced by the physical characteristics of the eliciting event) 

and the endogenous potentials (i.e. related to the information processing in the brain 

that may or may not be invoked by the eliciting event; Picton et al [2000]).  

Since ERPs are derived from the EEG, the spatial resolution limited mainly by the 

numbers of the recording sites of the electrodes. However, the temporal resolution 

can be increased by increasing the recording channels. This can allow the estimation 

the intracerebral locations of these cerebral processes (Luck, 2014). Another 

possibility for increase of temporal resolution is through multimodal EEG-fMRI 

measurements (Mijović et al., 2012; Mijović et al., 2013). Nevertheless, information 

provided by ERPs may be used in many different research programs, with vide 

application area, ranging from understanding how the brain implements the mind to 

making specific analyzes in medicine, psychology (Luck, 2014), but also for analyzing 

the brain dynamics in naturalistic environments (Debener, 2012; De Vos, 2014a). 

Moreover, the ERPs were also successfully applied in brain-computer interfacing 

(BCI), both in laboratory conditions for the e.g. P300 speller (De Vos et al., 2014b), or 

in naturalistic environments (De Vos et al., 2014a). 

The amplitude and latency of the ERP peaks can be used to measure the time course 

of cognitive processing, and the distribution of voltage over the scalp can be used to 

estimate the neuroanatomical loci of these processes (Luck, 2000). Moreover, since 

the temporal resolution of ERPs is in the order of milliseconds, they can be used to 

measure the when brain processing activities actually take place and according to 

Luck et al. (2014) ERPs are considered to be the “Reaction time of the 21st century”, 

since the behavioral reaction time (RT) and performance based measurement 

measurements are unable to provide the insights of what is happening between the 

stimulus presentation and the ones response (Luck, 2000; Parasuraman 2003).  

In order to successfully apply ERP study, the experimental paradigm should be 

specifically designed to elicit the desired cognitive processes (Picton, 2000). The most 

commonly used paradigm is the, so called oddball paradigm in which the improbable 

target stimulus should be detected in the train of the standard stimuli (Picton, 2000; 

Luck, 2014). The amplitudes and latencies of the ERPs elicited over both the target 

and standard condition are then calculated separately and compared, in order to 

investigate how the brain discriminates stimulus and evaluates the probability 
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(Picton, 2000; Luck, 2014). The oddball task paradigms usually elicit the P300 ERP 

component of higher amplitude magnitude over target stimuli, compared to standard 

ones (Polich, 2007; De Vos et al., 2014a) and it usually reflect the depth of cognitive 

processing, e.g. memory processing, attention processing, etc. (Polich, 2007; Luck 

2014; De Vos et al., 2014a).    

3.3.4.1 P300 ERP Component 

The P300 component of the ERPs represents the positive deflection of the ERP 

waveform that occurs around 300 ms after the stimulus presentation and it is the 

most prominent over central and centro-parietal scalp sites (Picton, 1992). It is also 

commonly called the P3 component, since it is the third major positive peak in the 

ERP waveform (Picton, 1992). It was discovered in 1965 (Sutton et al., 1965; Walter 

et al., 1965) and it was reported as the late positive ERP wave that is evoked by 

meaningful, task relative stimuli (Picton, 1992). Ever since, the P3 encouraged the 

use of ERPs for assessment of the neural basis of cognition (Polich, 2007). 

Although the early studies were concerned solely with functional analysis of the P3 

component (as related to stimulus probability), nowadays it is widely accepted that 

the P3 component is actually reflecting information processing, when brain 

mechanisms are engaged in attention and memory processing (Picton, 1992; 

Johnson, 1993; Polich, 2007). In other words, the P3 component is often used to 

identify the depth of cognitive information processing, being strongly related to the 

attention level (De Vos et al., 2014a; Johnson 1988; Polich 2007). It is usually 

considered that P3 component is not influenced by the physical attributes of the 

stimuli (Grey et al., 2004; Murata et al., 2005). However, the recent study 

demonstrated that if P300 is indeed equivalent to centro-parietal positivity (CPP) in 

the gradual target detection task, physical attributes could influence the P3 

component (O’Connell et al., 2012). 

Although, the P3 component was studied as a single waveform, recent studies 

support the notion that there are generally two distinct P3 subcomponents, namely 

P3a and P3b subcomponents, depending on the target/standard discrimination 

difficulty (Polich, 2007). Generally, the P3a subcomponent is stimulus driven and it 

reflect frontal attention mechanisms during the task, while the P3b component has 

more temporal-parietal scalp distribution and it reflects attention mechanisms, 



 

 

40 

 

which are related to subsequent memory processing (Polich, 2007). The main 

functional distinction between these two components is that P3a is related to low-

level attentional processing and it reflects the exogenous attention processing 

mechanisms (Daffner et al., 2000). On the other hand, P3b subcomponent is related 

to high-level attention processing and processing of the endogenous aspects of 

stimuli, context-updating information (working memory) and memory storage (Polich, 

2007). The latency of P3a and P3b can vary depending on the stimulus events which 

elicit them, nature of task, and population of participants included in the study, etc. 

(Polich, 2007). Although, P3a and P3b are mainly elicited separately, both 

subcomponents can be elicited simultaneously, forming bifurcated P3 component, 

which contains both subcomponents (Polich, 1988). The main cause of this is that 

the ERP represents the summation of the electric potentials and thus, both 

components could simultaneously, contributing to bifurcated P3 peak. 

3.4 EEG applications in Neuroergonomics Studies 

The application of the EEG systems for the measurements of the operators cognitive 

state are dating even before the neuroergonomics was established as the science 

discipline. For example back in 1990s, Parasaruman discussed on the application of 

the ERP recordings for various HF/E problem areas and he argued that the majority 

of previous research that was conducted on measurement of the mental workload 

(Parasuraman, 1990). Shortly after, Gevins et al. (1995) also discussed on the benefits 

of the EEG applications for the measurement of brain functions in operational 

environments, and especially those positions that require sustained attention of the 

workers. Further, Jung et al. (1997) demonstrated how the alertness, in the tasks 

that require sustained attention, can be monitored in near real-time, using EEG 

power spectra and they proposed that their system could be applied for non-invasive 

measurement of the cognitive state of human operators in attention critical settings. 

Following these research, and with the development of the technology, the EEG 

received much more attention for estimating the operators’ cognitive states in the 

operational environments, but also for the ergonomics task design (Parasuraman, 

2003; Mehta and Parasuraman, 2013a). The application of EEG in neuroergonomics 

studies covers both physical and cognitive work domains (Mehta and Parasuraman, 

2013a).  
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Regarding physical work, the EEG studies were mainly conducted on repetitive work, 

mainly by utilizing EEG derived movement-related cortical potential (MRCP), but also 

combining EEG and electromyography (EMG) signal modalities (Mehta and 

Parasuraman, 2013a). The usage of the MRCP for physical work was encouraged by 

the fact that MRCP provides valuable information regarding the role of cortical motor 

commands on the control of voluntary muscle activations (Mehta and Parasuraman, 

2013a). For example, it was found that MRCPs, from the supplementary motor area 

and contralateral sensorimotor cortex, are highly correlated with the force generation 

during elbow flection and associated muscle activities (Siemionov et al., 2000). In 

another study it was found that extension and flection result from separate cortico-

spinal projections to the motor neurons, while thumb extensions resulted in lowered 

EMG it also elicited greater MRCPs than flection movements (Yue et al., 2000). It was 

emphasized that these findings may provide important information for understanding 

the etiology of work-related MSDs, caused by repetitive work (Mehta and 

Parasuraman, 2013a). 

Regarding cognitive work, EEG was previously mainly used for studying of the 

mental-workload, vigilance and mental fatigue, and neuroadaptive systems (Mehta 

and Parasuraman, 2013a). Studying mental workload is important since if its values 

are too high, or too low, human-system interaction can be compromised, which could 

further lead to potentially hazardous situations (Mehta and Parasuraman, 2013a). It 

was reported that EEG correlates of mental workload are highly sensitive to changes 

in working memory load (Berka et al., 2007). Moreover, during problem solving and 

analytical reasoning EEG indices of mental workload also increase (Berka et al., 

2007). Further, EEG was also proposed for the on-line detection of changes in mental 

workload, with the aim of improving the operators’ performance (Kohlmorgen et al., 

2007).  

EEG has been recognized to be powerful method for detecting mental fatigue of the 

workers, but also to investigate the ability of operators’ to sustain attention over 

prolonged period, i.e. vigilance (Jung et al., 1997; Boksem et al., 2005; Parasuraman 

and Wilson, 2008; Marcora et al., 2009). Studies of vigilance are among the most 

important, since the general trend in industry is to automate as much processes as 

possible, both to reduce human error and to increase productivity (Sheridan, 1980). 

This way, the automation changes the role of the operators from the ones where they 
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are actively engaged in the production process to the ones of system controllers, 

which serve in fail-safe capacity and should react only when problem occurs (Warm 

and Parasuraman, 2008). However, the operators of automated systems, who perform 

monotonous but attention demanding tasks, largely face difficulty to maintain 

constant level of vigilance during their work shift (Jung et al., 1997). Thus, in the 

recent years there is increasing interest in investigation of the possibility of 

application of the on-line vigilance monitoring. This eventually directed the field of 

neuroergonomics to the development of the neuroadaptive systems, which should 

enable mutual interaction between automated system and the operators (Hettinger 

et al., 2003; Scerbo, 2006). The main principle of work of neuroadaptive is that both 

human and system could initiate the change in level of automation, i.e. the mental 

workload to which human operator is exposed, depending on the vigilance level of the 

operator (Scerbo, 2006).  

Apart from these three main domains of EEG in neuroergonomics studies, another 

important application of EEG is for prediction of human error (Eichele et al., 2008; 

Eichele et al., 2010; Fedota and Parasuraman, 2010). Neural signal that is associated 

with the human error is, so called, error-related negativity (ERN). Eichele et al. (2008) 

have reported that the maladaptive brain activity, related to the preceding error, can 

be detected around 30 sec before the error occurs. Similarly, the work of Fedota and 

Parasuraman (2010) states that studies of the ERN indicate that the brain has 

specific error monitoring and feedback system, which is in strong relation with brain 

networks that are involved in decision making and learning. Thus, ERN provides the 

possibility to understand how errors are made, which could provide the basis for 

creating the error prevention strategies (Fedota and Parasuraman, 2010).  

Another application of EEG in neuroergonomics studies can be seen through 

concurrent studies of physical and cognitive work, which did not received as much 

attention in the neuroergonomics studies as previously mentioned directions (Mehta 

and Parasuraman, 2013a). For example, Kamijo et al. (2000) examined how are the 

cognitive function influenced by the exercise activity. They reported that intensity of 

exercise influenced the P300 ERP component, which followed an inverted U-shaped 

curve depending on exercise intensity. Another study used EEG- and EMG-derived 

corticomuscular measure and it was found that corticomuscular coupling 

significantly decreases during mentally stressful condition (Kristeva-Feige et al., 
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2002). Importantly, this was not observable during traditional EMG and force 

production measurements, which emphasize the importance of studying also the 

brain function during physical tasks (Kristeva-Feige et al., 2002). Studies in this area 

of neuroergonomics generally agree that it is important to obtain brain dynamics 

together with more conventional ergonomics methods in order to understand the 

overall demands placed on human operators during the work that requires physical 

and cognitive processing (Mehta and Parasuraman, 2013a). 

Although, it was shown that EEG was successfully applied in variety of 

neuroergonomics studies, all of the previously mentioned studies shares the common 

limitations. These are mainly related to the recording equipment and procedures. In 

fact, traditional EEG recording systems suffers from long wiring, which creates huge 

movement artifacts, thus restricting natural movements of the participants during 

experimental procedures. Moreover, these studies were mainly confined to strictly 

controlled laboratory conditions, which require electro-magnetically shielded rooms 

with attenuated sound and lightning sources. Thus, the ecological validity of such a 

studies has been recently questioned by Gramann et al.  2011. Indeed, it is an invalid 

assumption that brain activity measured in dimly lit cubicles and with restricted 

movements reflects a general principle of the brain dynamics during cognitive 

processes in everyday life (Gramann et al., 2011). Thus, there is increasing interest 

in studying the brain dynamics in the naturalistic environments, by utilizing recently 

available wireless and wearable EEG systems (Makeig et al., 2009; Gramann et al., 

2011; Debener et al., 2012; De Vos et al., 2014a; Wascher et al., 2014; Gramann et 

al., 2014).  

Makeig et al. (2009) proposed the mobile brain/body imaging (MoBI) system in order 

to investigate how is spatially distributed brain dynamics related to natural human 

cognition. It was emphasized that for such a recording, the EEG sensors must be 

small and lightweight, battery powered, equipped with wireless data transmission 

technology and without the need for skin preparation (Makeig et al., 2009). Following 

these requirements, Debener et al. (2012) demonstrated it is possible to reliably 

record the EEG signals and even extract the ERPs, while the participants were freely 

walking outdoors. They created the EEG system by combining consumer EEG driver 

and EEG recording cap and compared the results obtained from the auditory oddball 

task in both indoor and outdoor conditions. Finally, they concluded that it is possible 
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to extract ERPs in the naturalistic environment with high accuracy (Debener et al., 

2012). Following this study, the possible application of the ERPs, extracted in 

everyday environment, for the BCI systems was confirmed by De Vos et al. (2014), 

confirming the reliability of wireless EEG systems. Moreover, Wascher et al. (2014) 

was among the first to demonstrate that reliable EEG recordings could be performed 

in simulated working tasks. In this study, the participants needed to move boxes 

around improvised workplace environment and the information on the cognitive 

context was reliably extracted and analyzed using eye-blink related potentials, and it 

was confirmed that eye-blink related potential are able to provide reliable information 

about cognitive processes in realistic working environment, i.e. in applied context 

(Wascher, 2014).  

Even though, EEG eventually became wearable and nowadays fulfills the most of the 

criteria imposed by Makeig et al. (2009), an important limitation for the on-sight 

recordings in the industrial environments is that they still require preparation of 

participants for recording (Gramann et al., 2011). This is mainly attributed to the 

usage of the gel-based, so-called “wet” electrodes. This kind of electrodes are 

uncomfortable, as the electrolyte gel must be placed on the head of the recorded 

person but previously the head surface should also be prepared in order to ensure 

good contact between electrode and recording site (Zander et al., 2011; Gramann et 

al., 2011; Mihajlović et al., 2015). Apart from time consuming for the preparation, 

there is also possibility of the skin irritation (Zander et al., 2011). In addition, upon 

usage of these electrodes, the recorded person should clean the hair from the gel, 

which is also time consuming and impractical. All of these put current EEG devices 

far from being user-friendly (Mihajlović et al., 2015). In fact, Chatterjee and Price 

(2009) argued that if wearable technology will be persuasive, they must be more user-

aware, ambient-aware and context-aware. However, at this stage this is not the case 

with the EEG systems, but there is a large amount of work conducted in order to 

make the EEG systems more attractive to human beings, both for medical and other 

everyday situations (for review see, Mihajlović et al., 2015). 

One of the current directions of research in bringing close EEG systems closer to 

healthy users and making them more persuasive is the development of dry (Chi et 

al., 2010; Gargiulo et al., 2010; Zander et al., 2011; Mihajlović et al., 2015) and even 

skin contactless electrodes (Mathews et al., 2007; Chi et al., 2010; Chi et al., 2012). 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3103872/#B12
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Additionally, moving away from medical applications, a clear momentum in the 

development of the consumer-based and dry-electrode EEG devices can be seen in 

recent product developments, emotive (www.emotiv.com), Mindo 

(http://mindo.com.tw/en/index.php), Muse (http://www.choosemuse.com/), etc. 

However, the desired signal quality (low signal to noise ratio) with dry-electrode based 

EEG systems cannot be achieved yet and they are still unable to reduce the movement 

artifacts, which are related to the relative movement of electrodes against the head 

surface (Chi et al., 2010; Chi et al., 2012) that are mainly caused by the fragile and 

complex electrode-tissue interface (Mihajlović et al., 2015). For that reason, reliable 

wearable EEG recording for neuroergonomics research can still be made solely with 

the wet electrodes, still somewhat limiting its usage for on-site industrial applications 

(Mihajlović et al., 2015). Nevertheless, operators’ brain dynamics can nowadays be 

successfully investigated with wearable EEG in faithfully replicated workplaces, 

where the ambient conditions and spatial dimensions could be preserved, by 

simulating the work activity (Mijović et al., 2016). This can provide insight in how the 

brain responds to complex industrial tasks and these findings can contribute to more 

efficient task designs. 

3.5 Multimodal Physiological Recordings in Neuroergonomics 

Multimodal systems in neuroergonomics studies that include EEG are usually used 

either in order to enhance temporal resolution of brain imaging techniques such as 

fMRI, fNIRS, etc., or to support EEG with increasing its spatial resolution, i.e. to be 

able to more closely locate specific brain regions of interest. Nevertheless, EEG can 

be simultaneously recorded also with other physiological sensors that record the 

activity of ANS (e.g. HR and GSR sensors), with the aim of better understanding of 

nervous system processes that are related to mental state, such as e.g. arousal, 

alertness, stress, etc.      

Heart rate variability (HRV) is non-invasive measure used to detect cardiovascular 

conditions and ANS activity (Sharma and Gedeon, 2012). Electrocardiogram (ECG) 

measures the electrical activity of the heart as it progresses through the stages of 

contraction (Ortiz-Perez et al., 2010). Main feature of the ECG signal is PQRST 

complex, where the R-R peak intervals are parameters that determines HRV 

(Rangayyan, 2015; Sharma and Gedeon, 2012). The differences in the time-course of 

http://www.emotiv.com/
http://mindo.com.tw/en/index.php


 

 

46 

 

these R-R intervals (heartbeats) are calculated when one wants to extract the HRV, 

as depicted in Figure 3-8. Another sensor that is used for robust but rough 

measurements of the HRV is the HR sensor. HR sensors mostly record just the 

intervals of the heartbeats in time, providing relatively simple signal. HRV can then 

be obtained in time domain, as the differential between these successive time-stamps 

of the beats. Alternatively, the time-frequency analysis can also be employed for 

calculating the power spectral density (PSD) of HRV (Task Force of the European 

Society of Cardiology, 1996).  

 

Figure 3-8: Graphical representation of the PQRST complex and R-R interval (adopted from 

Ortiz-Perez et al., 2010) 

HRV can be an important indicator of the stress states (Sharma and Gedeon, 2012), 

variations in alertness (O'Hanlon, 1972), fatigue (Lal and Kraig, 2011), drowsiness 

(Vincente et al., 2008), mental workload (Murata, 1994) and other physiological 

states. For example, stress cause increase in frequency of heart beats and decrease 

of amplitude of the heart beats in healthy individuals (Sharma and Gedeon, 2012). 

O’Hanlon (1972) was among the first to report the relationship between HRV and 

driver’s fatigue. In fact, he found that HRV increased with the driving time and related 

it to the drivers’ fatigue. Recently, Wijesuriya et al. (2007) confirmed this finding and 

proposed a HRV as the reliable measure for estimating drivers’ fatigue. Moreover, 

O’Hanlon proposed that a HRV can be also reliable measure of alertness, since HRV 

substantially dropped after reactivating the driver in his study. Further, Murata 
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(1994) found that mental workload influenced the HRV, in sense that ratio between 

low and high frequency power ratio increased linearly with the work level, confirming 

sensitivity of mental workload to HRV measures.   

Another physiological measure of ANS used abundantly in estimating mental states 

is GSR, also known as electro dermal activity (EDA) measures flow of electricity 

through the skin of recorded person (Sharma and Gedeon, 2012). There are three 

different measurement principles for GSR measurement; however, the most 

abundantly is exosomatic measurement where skin conductance is measured by 

applying direct current with constant voltage and using silver-silver chloride 

(Ag/AgCl) electrodes and an electrolyte gel (Fowles et al., 1981). It is one of the oldest 

methods for measuring the physiological signals from humans and the reason for its 

use in the present time is that the data are easy to obtain and the GSR is simple 

waveform (Lim et al., 1997). Specific features of interest, which are obtained from 

GSR recording, are skin conductance response (SCR) and skin conductance level 

(SCL) that can be associated with specific aspects of cognitive state (Lim et al., 1997). 

The former (SCR) provide an measure of phasic increase of sweat rate that is related 

to occurrence of some stimuli, while the latter (SCL) are obtained in response free 

recording, as the number of non-stimulus specific SCRs (Bouscein, 2012). Thus, SCR 

represents fast varying skin conductance value, over time course of seconds. Figure 

3-9 depicts specific characteristic parameters of the SCR waves. First characteristic 

is its latency, i.e. time elapsed between stimulus presentation and the rise of the SCR 

wave (Bouscein, 2012). Next important parameter is the rise time, or the time needed 

for SCR to reach its upper peak amplitude, which is the next important parameter 

that can be obtained from SCR. Finally, half recovery time, that is, how much time is 

needed for peak to return to its half amplitude value (Bouscein, 2012). 
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Figure 3-9: Graphical representation of the SCR wave, with its main characteristics (Addopted 

from Kappeler-Setz et al., 2013) 

Similarly to HR measurements, GSR studies confirmed that SCR and SCL could be 

used for assessing various cognitive state from changes in ANS. For example, 

Blakeslee (1979) analyzed SCRs before and immediately after stimulus presentation 

and he reported that SCR magnitudes declined with the performance decrease over 

the experiment and he proposed that these changes are in close relationship with 

vigilance performance and attentional processes. It was also previously reported that 

movements, motor preparation and effort convolved with the increase in EDA, since 

the motor-related autonomic responses are causing sympathetic arousal that is 

necessary for support of motor behavior (Vissing et al., 1991). Further, Wilson (1991) 

showed that the pilot’s EDA measures are highly correlated with the changes in 

responses in various demands of the flights, thus relating them to changes in mental 

workload to which pilots are exposed. Similarly, Baldauf et al. (2009) found that EDA 

activity strongly increases with the increasing cognitive workload during simulated 

driving, while it remain unchanged during the low cognitive demands imposed to the 

driver. Further, Bundele and Banjeree (2009) proposed that EDA measures 

significantly correlate with the mental fatigue during the driving, showing possibility 

of timely detection of fatigued driver. 
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From all mentioned studies, it is clear that each of the signal modality, namely GSR, 

HRV and EEG can reflect various cognitive states. However, the multimodal system 

that simultaneously measures and investigates the relationship between these signal 

modalities would be beneficial for better understanding both the CNS and ANS 

activities in applied environments (Dunaway and Steelman, 2013). Following this 

notion, Dunaway and Steelman (2013) proposed the investigation of relationship 

between multimodal cognitive load measurements during simulated economic 

activities in order to provide the most optimal measure for the examination of 

cognitive load during these activities. Further, Giusti et al. (2009) proposed a 

multimodal system for investigating the driver’s vigilance level in real time, with the 

aim of reducing the probability of car accident due to lapses in attention. They 

reported that their system showed the promising results for detection of micro-sleeps 

and lapses in attention, however, they reported that this system is not ready for the 

real-life driving since it utilizes EEG measurements, which at the time were 

conducted with the traditional EEG system susceptible to motion artefacts. Another 

multimodal study in study in driving and transportation domain was conducted on 

locomotive train operators for the aim of estimating the operators’ arousal (Song et 

al., 2014). They also reported that the system based on the multimodal physiological 

signal acquisition and processing is indeed relevant and that it could contribute to 

increasing safety in public transportation systems (Song et al., 2014). One of the 

drawback of such systems could be that such a system could be uncomfortable, as 

the workers should wear the physiological sensors over the work shift. However, the 

recent study of Doty et al. (2013) stated that their participants in the study reported 

moderate to high comfort while wearing HR, GSR and EEG sensor over eight hour of 

consecutive recording. Thus, it seems that miniaturization of recording sensors have 

increased the comfort for the workers and supported the use of such a systems in 

real-working environments. Another important limitation of usage of such a systems 

is that in case of real-life recording in applied industrial environments, the company 

managers would have full access to the physiological data of the workers, which 

raises privacy concerns. Fairclough (2014) recently yielded this concern, where he 

argued that physiological data are personal belonging and that before the actual use 

of systems for physiological recordings in applied environment, the recorded person 

must at least provide his/her consent for the recording. Finally, he argued that a 

system of keeping the obtained data should be confidential, as it is in medical records.   
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An important notion at this point is that all above-mentioned studies were concerned 

with the utilization of the physiological measurements mainly in domain of drivers’ 

safety, aerospace sector, transportation sector in general and office work. There is an 

obvious lack in the literature regarding the recordings of operators’ physiological state 

during either simulated or real work in industrial environments. For that reason, this 

dissertation mainly aims in investigation of possibilities of utilization of physiological 

recording during simulated industrial work, with the aim of timely detection of 

deviations in operators’ state during monotonous and repetitive work. 
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4. Motion Capture and its application in ergonomics 

Industrial operators perform physically intensive tasks on a daily basis, since the 

majority of industrial tasks are physical in nature, thus being constantly exposed to 

risks of injury (Martin et al., 2012). There are many industrial tasks requiring manual 

action of the operator, e.g. object manipulation, lifting, pushing, pulling, etc. that are 

one of the major sources of work-related musculoskeletal disorders (MSDs, 

Hoozemans et al. [1998]). Although automation has somewhat reduced the need for 

physical activity for operators, the operators of automated systems are usually 

required to observe the automated process through visual display terminal (VDT) 

unit, sitting or standing over prolonged period of time, which can also lead to 

development of work-related MSDs (Carter and Banister, 2007). Therefore, the use of 

methods from physical ergonomics to assess the work performance is still one of the 

most studied directions in HF/E research (Hedge, 2005). 

As mentioned in the section 2.2.1 (Physical Ergonomics Domain), diverse methods 

and tools exists for the ergonomic assessment of manual tasks and postures of the 

workers, such as self-reports, observational measurements and direct methods 

(Vignais et al., 2013). Even though the researchers are continuously working on 

developing supportive tools for identification and evaluation of potentially hazardous 

human motor tasks and postures, such as QEC, manTRA, RULA, REBA, HALTLV, 

OWAS, LUBA, OCRA, Strain Index, SNOOK tables and the NIOSH lifting equation, 

etc. (Andreoni et al., 2009), the fact is that the self-reports and observational methods 

still have certain drawbacks, the biggest being that the analyses require an off-line 

analysis and are subjective in nature (Patrizi et al., 2015; Mijović et al., 2015a). 

Moreover, these methodologies are mostly consider during the design conditions, but 

they are not used for modification of the existing work conditions (Patrizi et al., 2015).  

Therefore, there is necessity for the direct on-site evaluation of operators’ postures 

that can be carried out in real-time and in an objective, accurate and quantitative 

manner (Partizi et al., 2015). Ultimately, the direct measures of operators’ postures, 

by utilizing biomechanical analysis, could provide benefits in practice (Vignais et al., 

2013). 

Apart from usages in pose estimation, MoCap sensors can be utilized for affective 

computing (Karg et al., 2013; Kleinsmith and Bianchi-Berthouze 2013). As stated by 
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Kleinsmith and Bianchi-Berthouze (2013), technological advancement pushed the 

body motion analysis beyond that of solely gesture analysis and in multimodal 

interaction with physiological measurement, it was shown that body expressions 

could be powerful estimator of affective states. Affective phenomena refers to human 

emotions, moods, feelings, attitudes, temperament, affective dispositions and 

interpersonal stances (Schrer, 2005; Karg et al., 2013). Affective states can be 

recognized from body movements, speech, facial expression and physiological 

parameters (Karg et al., 2013). Although psychological research indicated over a 

century ago that affective states are expressed through body movements, the systems 

for automatic recognition of affective states became available only from 1990s, which 

largely attracted engineers and computer scientist to this area of research (Karg et 

al., 2013). In the early years, facial expressions were mostly studied modality in the 

area of affective computing, however it was found that the body expressions are as 

powerful as facial expression in conveying emotions (Kleinsmith and Bianchi-

Berthouze 2013). Moreover, one of the advantages of using body motion, in 

comparison to the other modalities, is that it is capable to recognize the affective 

states from the distance (Karg et al., 2013). 

Another area of research where MoCap systems can be used, but are not utilized yet, 

is in the area of human cognition. Although it is closely related to affective states, 

there is an obvious lack in motion recognition literature related to the application of 

MoCap systems for investigation of the relation between movements and vigilance or 

attention. Typically, when performing a specific task, human shows two types of 

behavioral activities, those directly related to the task performance, and those that 

are task unrelated behavioral activities (Roge et al., 2000). Based on the various 

research from 1970s, Roge et al. (2000) classified these task unrelated activities in 

five categories:  

1. ‘Postural adjustments’ – movements of one or several parts of the body in space 

2. ‘Verbal exchanges’ – Those communications which does not include any piece 

of information related to the work activity itself 

3. ‘Ludic activities’ – movements indicating the manipulations of the movements 

4. ‘Self-centered gestures’ – movements of one or both hands towards the body 

5. ‘Non-verbal activities’ – practically equivalent to facial expressions 
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Generally, it was reported that the number of these task non-specific activities 

progressively increases with the duration of the work, regardless of the time of the 

day (Rogue et al., 2000). Although, Roge et al. (2000) also confirmed that the number 

of task unrelated movements were negatively related to the vigilance level, their 

analysis consisted of recording the participants with the red-green-blue (RGB) 

camera and the movements were quantified in the post-hoc analysis, through manual 

counting of these movements. However, this kind of analysis is equivalent to 

observational methods and therefore, unreliable. On the other hand, the MoCap 

systems could be engaged in such analysis and automate the process of recording 

and analyzing the human movement, with the aim of assessing the human cognitive 

state during the regular work routine (As it will be presented in Chapter 9). 

4.1 MoCap Devices in Ergonomics 

The direct analysis of human movement is mainly based on pose estimation, which 

refer to the process of estimating the configuration of the underlying kinematic 

skeletal articulation structure of a person (Moeslund, 2006). Various sensors can be 

utilized for pose estimation, starting from classical RGB cameras (Nakajima et al., 

2000), and variety of range cameras and depth sensors (e.g. structured light 

technology; Zhang, [2012] or through combination of wearable sensors, e.g. internal 

motor units (IMUs; Stiefmeier et al. [2008]). In industry setting, researchers are 

working on applying this approach in defining work processes (Hori et al., 2006), 

preventing improper worker positions (Li & Lee, 2011) and proper training and 

monitoring of new workers (Ray & Teizer, 2012). 

An overall research of software and hardware available on the market for 

biomechanical analysis indicated a number of largely diverse solutions (as presented 

in Mijović et al., 2015a). Larger companies (especially automotive) have made 

considerable financial investments in Motion Capture (MoCap) devices in recent years 

(Horejsi et al., 2013). The devices that are mostly used for ergonomics evaluation are: 

Impuls X2, motion capture system (PhaseSpace, Inc.); The ART Motion Capture 

(Advanced Realtime Tracking, Inc.); MOTIONVIEW™ (AllSportSysrems, Inc.), etc. 

These devices are well known, i.e. from the entertainment industry, where it is 

possible to animate a virtual character as a result of capturing real actor movements 

(Hojresi et al., 2013). These expensive MoCap device, provide the possibility to acquire 



 

 

54 

 

positions of points (called markers) on a character ́s body in real time. Once the data 

has been acquired, there is a need to import it to the 3D simulation software, e.g. 

JACK (Siemens, Inc.), 3DSSPP (developed at university of Michigan, 

http://www.umich.edu/~ioe/3DSSPP/index.html), OpenSimulator 

(http://www.opensimulator.org) etc. in order to perform subsequent ergonomics 

analysis. 

Even though MoCap systems could offer highly precise ergonomic analysis, there are 

still certain bottlenecks in performing the on-line measurements in real-life industrial 

environments (as discussed in Mijović et al., 2015a). The majority of commercial 

MoCap devices are financially demanding and for reliable on-the-fly recording, it is 

often needed to devote an entire room (Hojresi et al., 2013). This presents one of the 

major drawbacks for their use in industry and especially in small to medium 

enterprises (SMEs). Further, MoCap Systems mainly used external sensors (Led 

diodes, Depth Of Field targets, etc.), which are attached to the recording person, thus 

posing movement limitations to the workers and being uncomfortable for the use in 

the industrial settings.  

Up to date, there are only two systems that could possibly be used for the on-line 

recordings and analysis: Real-time Siemens JACK & PSH Ergonomics Driver 

(Synterial, Inc., http://www.synertial.com) and Cognito system (developed within EU 

project Cognito, framework FP7, http://www.ict-cognito.org and results were 

published in Vignais et al., 2013). However, the first system can be used when 

company is addressing the ergonomic aspects of manual operations during early 

stages of product design and manufacturing planning and there is a need to use the 

IGS Synertials motion captures suits. On the other hand, the Cognito system uses 

on-body sensor network. These sensors are composed of tri-axial accelerometer, a tri-

axial gyroscope and a tri-axial magneto- inductive magnetic sensor (Vignais et al., 

2013). Cognito systems does not record the movements of the worker, but uses the 

sensor readings as an input data to computer based RULA ergonomic assessment 

method and provide feedback when certain thresholds are reached (Vignais t al. 

2013). Therefore, both of the systems are dependent on the external sensors attached 

to the person (presented on the Figure 4-1), which still limits their use in the 

naturalistic industrial environment.   

http://www.umich.edu/~ioe/3DSSPP/index.html
http://www.opensimulator.org/
http://www.synertial.com/
http://www.ict-cognito.org/
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Figure 4-1. (a) Combination of Synertial IGS suit with Siemens JACK software for ergonomics 

evaluation of car assembly, a case study from Skoda automotive (adopted from: 

www.synertial.com); (b) – IMUs sensor network developed on Cognito project. In this case, 

apart from possibility to track the workers motion, the Cognito system provides also support to 

the worker in sense of information on head-mounted VDU, as seen on figures bellow (adopted 

from http://www.ict-cognito.org) 

With the technological advancement in the computer vision technology, new MoCap 

systems emerged that does not require neither external markers nor IMUs for the 

precise acquisition of the human motion. These systems are based on structured light 

technology (Zhang et al., 2002). Since the introduction of such systems, the gaming 

industry accelerated the development of consumer based products, which were 

primarily aimed for contactless interaction between the user and the game itself, in 

form of Microsoft Kinect. However, the Microsoft provided an open source software 

development kit (SDK) for Kinect, which attracted many scientists to investigate the 

possibilities to apply Kinect for various applications, such as gait recognition 

(Milovanović et al., 2012; Milovanović et al., 2013), ergonomics assessment (Dutta, 

2012; Diego-Mas and Alcaide-Marcal, 2013; Partizi et al., 2015), etc. Another, more 

recent sensor that has been developed, which is essentially based on the same 

principle as Kinect is the Leap MotionTM. Although it was primarily developed for the 

explicit HCI between user and computerized system, its SDK is also freely available 

which opened possibility to investigate the potential for its application in various 

application fields (Zubrycki and Granosik, 2014; Bassily et al., 2014). The main 

difference between the Kinect and Leap Motion is that the Kinect is capable of 

http://www.synertial.com/
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recording the full body motion, while the Leap Motion has much smaller recording 

range and it is used for hand pose estimation. 

4.1.1 Kinect and its Application in Ergonomics 

Kinect consists of several sensors that are placed in one compact device (Figure 4-

2a). Practically, Kinect belongs to the group of 3D depth camera, since it contains a 

depth sensor, a color camera and a four-microphone, that provide a 3D full-body 

MoCap device (Zhang, 2012). The depth sensor contains of IR projector and IR camera 

(as depicted on Figure 4-2b). The Kinect working principle is based on structured 

light technology. The IR projector is an IR laser that passes through diffraction and 

it fires a set of IR dots in the acquisition area (Zhang, 2012). Once the dots land on a 

certain 3D object, the IR camera acquires the reflected pattern and the device 

performs the analysis using structured light algorithm’s in order to compute the 

depth map and it is capable of 3D object recognition (Zhang, 2012; Patrizi et al., 

2015). More closely, a depth value is assigned to each pixel of the image acquired by 

the RGB camera with the aim of image production, which pixels combine the 

information about red, green and blue color, and the distance from the Kinect sensor. 

Further, the acquired color and depth map is segmented in order to recognize the 

human body (Partizi et al., 2015). Kinect has also inbuilt algorithms for skeletal 

tracking, in which the human body is represented by specific key-points that 

represents human joints, e.g. hand, neck, etc. (for review see Zhang, 2012). 

 

Figure 4-2: (a) - Kinect Sensor; (b) - Position of the sensor inside the Kinect; (c) - Graphical 

representation of the Kinect acquisition space (Addopted from Milovanović et al., 2013) 
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The acquisition are of the Kinect sensor is from 0.8 m to 4m frontally from the sensor 

placement in the z-axis, and the x and y axis are determined by the recording angle 

in a way that in horizontal axis it covers 57.50, while vertically it can cover 43.50±270, 

depending on the tilt of the device (Milovanović et al., 2013). The acquisition space is 

graphically depicted on the Figure 4-2c. 

Kinect has shown strong potential for the ergonomics studies. For example, Martin 

et al. (2012) proposed its usage for the real-time pose estimation during the lifting 

tasks, and particularly in training the operators. Similarly, Clark et al. (2012) 

investigated the usage of Kinect for clinical application, where frontal and lateral 

reach were investigated and they compared it to the results obtained by reliable Vicon 

MoCap system (which requires the on-body markers). Their results support the 

Kinect for future ergonomics assessment in clinical application, since it is less 

intrusive and far less expensive than benchmark Vicon system (Clark et al., 2012). 

Further, Diego-Mas and Alcaide-Marzal (2013) demonstrated the Kinect’s capability 

to support the observational method OWAS (Ovako Working Posture Analysis), by 

automated acquisition of joint position and translating them directly to the scoring 

sheet of work postures as proposed by OWAS. Moreover, they compared the results 

obtained by Kinect and Vicon system and showed that Kinect proved to be reliable 

tool for motion tracking of workers during the work tasks (Diego-Mas and Alcaide-

Marzal, 2013). Another recent study compared the performance of the low-cost Kinect 

sensor and high-end marker-based MoCap sensor BTS SMART and they provided the 

support for the future use of Kinect in ergonomics assessment (Partizi et al., 2015).  

Above-mentioned studies highly support Microsoft Kinect and its technology for 

future application in ergonomics for the online posture assessment of the workers. 

Thus in this dissertation it is aimed to utilize marker-less sensor for the recording of 

the participants during the simulated working activities, with the aim of developing 

model for the on-line posture estimation. Moreover, as discussed previously, the body 

motion can be related to the cognitive state of the person through the evaluation of 

the task unrelated movements, thus it is aimed in investigating the correlation of 

these movements with the attention level as estimated by the EEG recordings. 
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4.1.2 Leap Motion controller and its Applications 

The Leap Motion controller is a small and affordable consumer-based motion sensor 

(Figure 4-3a) that is available on the market since July 2013 (Fanini, 2014). Working 

principle of the Leap Motion controller is similar to the one from the Kinect, where 

the biggest difference is that Leap Motion was developed for hand gesture recognition, 

while Kinect is capable of acquiring full body motion and facial expressions (Marin et 

al., 2014). Another important difference is that the Leap Motion controller provides a 

more limited amount of information, in sense that it provide just the information 

about the key points, rather than complete depth map (Marin et al., 2014). Further, 

the acquisition area of this sensor is much smaller than the Kinect’s one (Figure 3-

2b), but it provides much more accurate data points (Marin et al., 2014), in the range 

of sub-millimeter accuracy (Bassily et al., 2014). As depicted at Figure 3-3a, the Leap 

Motion controller consists of 2 IR cameras and 3 IR Light-Emitting Diode (LEDs) that 

are able to track hands, fingers and a few tools in mid-air inside a specific field of 

view (Figure 4-3b). Generally, it should be placed on the desktop facing upwards in 

order to operate accurate with high tracking frame-rate inside of designated field of 

view (Marin et al., 2014).  

 

Figure 4-3: (a) - Leap Motion Controller and its inner structure: 1 – IR LED, 2- IR camera; (b) – 

Graphical representation of the Leap Motion’s field of view, where the acquisition space 

limitations are as follows: 1500 angle on the long side, 1200 on the short side, 600 mm above 

the controller and 600 mm wide on each side (Figures adopted from 

https://www.leapmotion.com/product/desktop accessed on 6/11/2015) 

https://www.leapmotion.com/product/desktop
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The accuracy of the Leap Motion measurements were confirmed in the work of 

Weichert et al. (2013). They used the industrial robot with a reference pen that was 

placed above the Leap Motion controller, which allows the accuracy of the position 

coordinates down to 0.2 mm. They confirmed that the Leap Motion controller was 

precise in tracing the pen tip with the accuracy lower than 0.2 nn, thus they 

concluded that the obtained results were accurate and robust (Weichet et al., 2013). 

As its accuracy was confirmed, the follow-up studies were conducted in order to 

investigate the possibility of applying the Leap Motion controller in medical 

applications. Ebert et al. (2014) created the plug-in for the OstriX medical image 

viewer that was based on the Leap Motion controller, i.e. they connected the hand 

gesture analyzer based on Leap Motion controller to the OstriX medical system in 

order to allow the interaction with the viewer solely through the hand gestures (Ebert 

et al., 2014). They finally proposed that these hand gesture technologies should be 

standardized for use in medical applications (Ebert et al., 2014). Another medical 

application was proposed by Khademi et al. (2014), as a tool for stroke rehabilitation 

in order to practice the finger individuation. Apart from medical applications, Leap 

Motion controller was proposed as a tool for remotely controlling the robotic arm, by 

hand gestures (Bassily et al., 2014; Zubrycki and Granosik, 2015).     

From all above mentioned, it is clear that the Leap Motion can be utilize for the 

various application fields of HCI and human-robot interaction (HRI). However, 

currently there are no studies that proposes the utilization of the Leap Motion for the 

ergonomics assessment. One of the ways in which it could be applied is for the 

estimation of the hand position during material manual handling and especially for 

hand pinch and grips. The problem of hand pinch and grips has been included in the 

occupational repetitive actions (OCRA) analysis and discussed in international 

ergonomics standard ISO 11228-3:2007. Inappropriate pinches can lead to muscle 

strain and should be avoided (ISO 11228-3:2007) and therefore they should be 

avoided in low-load material handling. However, in the real-life working environment 

this is not feasible and therefore the evaluation of these actions should be performed 

in working environment. Since the Leap Motion can provide the precise acquisition 

of the key-point position, the pinches (as depicted on Figure 4-4) could be evaluated 

in real-time, with the aim of reducing possible injuries and long-term exposure of the 

irregular material pinches and grips.  
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Figure 4-4: A few example of low-load material pinches (Adopted from ISO 11228-3:2007) 
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5. General Methodology: Towards Creation of 

Multimodal System for Cognition-aware Computing 

The third and fourth Chapter discussed on how different signal modalities could be 

used for the assessment of user cognitive state and their application in the industry. 

It was discussed how physiological sensors can be used independently, but also in 

the multimodal interaction, for better understanding of human cognition in 

naturalistic environments. Moreover, chapter 4 discussed on utilization of MoCap 

devices for pose estimation, but also for the aim of assessing the information on the 

mental state of the person.  

In this chapter, which is based on the work of Mijović et al. (2015a) that was 

presented on “Human Computer Interaction International conference (HCII 2015)”, 

the multimodal system that consist of physiological (EEG, GSR, HR) and motion 

capture (Kinect and Leap Motion) sensors will be presented. The objective of the 

system is to synchronously record the operators’ physiological and motion signals 

during simulated work routine, with the aim of detecting the deviations in the user 

state, so that appropriate actions could be timely performed once the physiological 

parameters starts deviating from the optimal conditions. However, this thesis is 

concerned solely with the post-hoc analysis and investigation of the relationship 

between these signal modalities. Nevertheless, the real-time estimation of the 

workers’ cognitive states will be performed in the future studies. Another objective of 

the multimodal recording is to investigate how different parameters influence the 

workers cognitive states. These results from post hoc analyses could be used in the 

workplace design phase and will be presented in Chapter 6 and Chapter 7.  

The multimodal system can be considered as a system that is capable of implicit 

multimodal HCI (so called MMHCI; Jaimes and Sebe, 2007; Mijović et al., 2015a). 

Traditionally, MMHCI is used with the main aim of investigating the possibility to 

bring closer computer technologies to the users (Jaimes and Sebe, 2007). However, 

MMHCI research was mainly concerned with an explicit, rather than implicit 

interaction. In order to fulfill this gap current thesis is mainly aiming in investigating 

possibility for employing implicit MMHCI, particularly in industrial environment (As 

presented in Mijović et al., 2015a). In the following chapters, the term of implicit HCI 
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will firstly be introduced (chapter 5.1). In order to develop the implicit MMHCI system 

the replicated workplace from industrial partner “Gomma Line” (Kragujevac, Serbia) 

was used and it will be presented in chapter 5.2. The simulated assembly operation 

is described in the Section 5.3.1. Since one of the aims of the studies was the 

investigation of the P300 ERP component, the participants were presented with the 

psychological tests, which are described in Section 5.3.2. Further, the participants 

in the study were equipped with the wearable sensors network for physiological 

recording as presented in Section 5.4.1. and their movements were recorded with the 

MoCap devices as presented in the Section 5.4.2. Finally in order to synchronously 

record each of the signal modality, the Lab Streaming Layer (LSL) was used and the 

overall system architecture will be presented in the Section 5.5. 

5.1 Implicit HCI system for Cognition-Aware Computing 

As already stated in the introduction section, HF/E investigate how the human 

interacts with the system. Similarly, the HCI is a cross-disciplinary area of research 

that deals with design, theory, implementation and evaluation of the way that 

humans interact with the computer devices (Kim, 2015). Presently the interaction 

between human and devices is becoming increasingly important for human success 

in daily life (Schmidt, 2000). Traditionally, HCI was mostly concerned with the explicit 

interaction, i.e. it was concerned with the interface design (Hartson and Gray, 1992). 

In explicit interaction the user provides the computerized system with an input, in a 

certain level of abstraction through a command line, graphical user interface (GUI), 

gesture or speech input, and expect that the system further process that information 

and provide certain output (Schmidt, 2000). In that view, explicit HCI technological 

context casts a view on computers that are regarded as solid-state machines relying 

on explicit interaction through mouse, keyboard and monitor or in more recent years 

through speech, gesture and touch screens.  

Although users became familiar with the devices that are enabling explicit HCI, they 

undoubtedly limit the speed and naturalness of HCI (Pavlović et al., 1997). 

Alternatively, specific challenge for the improvement of existing HCI studies is to bring 

it closer to the communication patterns of human beings, and hence to create more 

“natural” interaction. Schmidt (2000) provided a definition of implicit HCI as “An 

action performed by the user that is not primarily aimed to interact with a computerized 
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system, but which such a system understands as an input”. This definition was 

preceded by the notion that the most of the interaction between people, and situation 

in which they are interacting, is implicitly exploited in communication (Schmidt, 

2000). This notion clearly outlines that an important part of natural interaction 

actually depends on implicit interaction. In that direction, the development of small, 

reliable and affordable mobile sensors opens a whole set of opportunities for natural 

interaction with computing entity through sensitive workplace environment (Mijović 

et al., 2016c). 

Present thesis investigated the possibility of introduction of the implicit HCI system 

for monitoring the workers cognitive state, i.e. for cognition-aware computing (Bulling 

and Zander, 2014) in industry. Cognition-aware computing was recently defined as 

the computing system that senses and adapts to cognitive aspects of personal context 

(Bulling and Zander, 2014). The introduction of cognition-aware computing in 

industry would be beneficial, since the industrial workers that are working in 

assembly positions, which require performing monotonous repetitive tasks, are 

susceptible to boredom, mental fatigue and loss of concentration as time progresses 

(Smith, 1981; Fisherl, 1993). Their activities often require execution of tasks 

dependent on use of tools and/or operating a machine, and in such a context explicit 

interaction with computer becomes impractical. Therefore, a new approach for 

communication is needed that can be introduced through an interaction model that 

is more natural. Stable foundation in building such interaction model in production 

workplace should be on different communication modalities that can ensure implicit 

interaction between worker and workplace, such as movement, voice, 

psychophysiological signals, etc. In order to reach this goal, a truly unobtrusive 

sensing environment was created through the introduction of sensitive workplace 

(Mijović et al., 2015a; Mijović et al., 2016c).  

Proposed sensitive workplace consists of unobtrusive MoCap technology and 

wearable physiological sensors, which both provide the possibility for monitoring the 

work activities, without interfering with standard work routines of industrial workers 

(As it will be presented in the following Section). In essence, the proposed approach 

should provide a continuous and real time monitoring of worker activities in realistic 

production environment, which could enable timely detection of deviations in the 

worker’s cognitive state. In this way the system could be capable of preventing the 
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operating error, thus decreasing the number of injuries at the workplace and in the 

same time increasing the productivity and improving an overall workers’ well-being. 

In comparison to existing systems that require workers’ adoption to designed 

workplace, the approach proposed here should enable continuous improvement of 

the work process according to specific profile of the worker.  

The proposed model of the sensitive workplace system, which will rely on novel 

human-computer interaction system founded on implicit input, is depicted on Figure 

5-1. Underlying idea is to use unobtrusive motion tracking sensors to record worker’s 

body movements (BodyMovement), identify gestures (GestureRecognizer) and develop 

a model of optimal worker movement on a workplace (GestureAnalyser), Figure 5-1. 

Using structured light technology captivated in the Kinect and Leap Motion devices, 

it is possible to capture body movements represented with estimated stick figure of 

body and hand pose estimations retrieved in near real-time. Based on this input it is 

intended to develop a Gesture recognizer, able to recognize generic gesture patterns 

on a workplace. Output from this module will feed in to application Gesture analyzer, 

which is in the development phase, in order to specify models of worker behavior on 

a specific workplace (Mijović et al., 2015a). 

On the other track, physiological signals were acquired, using EEG, GSR and HR 

sensors to record workers physiological signal (physiological signal), distinguish 

physiological features (physiological feature extractor) and attempt to detect worker 

attention state, mental fatigue, vigilance, engagement and emotional state 

(physiological analyzer), Figure 5-1. All physiological sensors were connected to 

recording computers via Bluetooth connection, thus the movement artefact that are 

usually caused by the long wiring were suppressed. Upon data acquisition and 

processing, it is intended to build a physiological feature extractor and physiological 

analyzer that should be used for the real-time assessment of the worker’s cognitive 

state. However, these modules are still under development. 

Finally, in order to improve the physiological analysis, and reach more stable 

conclusions on the workers’ cognitive state, future research will be conducted to 

investigate the possibility of including the output from gesture analysis in to 

physiological analyzer decision-making process (Figure 5-1). Since body movement 

represents a final result of cognitive effort, establishing correlation between noticed 
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disturbance in worker gestures and mental state of the worker (acquired through his 

physiological signals) should enable early recognition and prevention of possible 

mental or physical strain of the worker. 

 

Figure 5-1: Visual Representation of the Multimodal system of the sensitive workplace 

(Addopted from Mijović et al., 2015a) 

 

5.2 Development of the Sensitive Workplace 

For the purpose of investigation the feasibility of the sensitive workplace concept, a 

full scale workplace replica was created, through consultancy with the car sub-

component manufacturing company, at the Department for the production 

engineering, Faculty of engineering, University of Kragujevac. Since reliable EEG 

recording still relies on wet electrodes, the on-site industrial EEG recording cannot 

be performed yet. For that reason, we simulated the production process of the rubber 
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hoses, used in the hydraulic brake systems in automotive industry, in a faithfully 

replicated workplace (Figure 5-2). In order to create a naturalistic environment all 

major elements from the real factory settings have been included while preserving 

respective spatial ratios and mimicking the ambient conditions.  Figure 5-2 (left 

image) depicts the real-life workplace, while the laboratory replica of the workplace is 

presented on Figure 5-2 (right image).   

 

Figure 5-2: Graphical representation of the real workplace (left image) and the faithful replica 

of the existing workplace (right image) 

The laboratory was air-conditioned and microclimate conditions controlled, keeping 

the ambient temperature at 24±1°C while the measured relative air humidity value 

was between 40% and 60%. The luminance at the real workplace was also replicated 

from the industrial settings, using the same lightning and maintaining the luminance 

value at 810 lx. Finally, the noise trace was obtained by recording sounds in the 

vicinity of the original production facility, using cardiodid condenser microphone 

AT2020USB (Audio-technica, Japan), and this was replayed during the experiments 

with an SW-HF 5.1 6000 surround multimedia speaker (Genius, Taiwan). The 
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ambient (light, noise) and microclimate (temperature, humidity) condition values 

were obtained using multifunctional environmental meter device PCE-EM882 (PCE 

instruments, UK). 

Once the replicated workplace was created, the participants in the study were 

equipped with the wearable physiological sensors network, as depicted on the Figure 

5-3. Additionally their movements were recorded using Kinect sensor, which was 

placed in front and above the participants (as shown at the Figure 5-3) and hand 

gestures were recorded with the Leap Motion sensor, which was placed in the table, 

bellow the hands of the participants (Figure 5-3). The detailed description of the 

sensors used in the study will be provided in the following Section 5.4.   

 

Figure 5-3: Figure 3. Replicated workplace and the sensors placements 

5.3 Experimental Task 

5.3.1 Simulated Assembly Task 

In the production process, an operator carries out the crimping operation in order to 

join a metal extension to a rubber hose. This single operation, carried out in a sitting 

position, consists of eight simple steps (actions). Step-by-step simulated operation, 
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carried out by participants in the replicated working environment, is graphically 

presented in Figure 5-4 and explained in detail further in the text. 

During the simulated operation, a single functional modification in the replicated 

workplace was introduced. In order to elicit the P300 ERP component during the 

simulated task, an information for the initiation of the simulated operation was 

presented to the participants in the study in the form of the visual stimuli (explained 

in detail in the following Section). This was necessary, since the covert cognitive 

context is usually encrypted in the brain dynamics and in order to isolate and analyze 

specific cognitive processes, they should firstly be evoked and co-occurring factors 

should be isolated (Bulling and Zander, 2014). The ecological validity of such a 

modification lies in the fact that workers on an assembly line would often be provided 

with the information about the performed task at any given moment (Stiefmeier et al., 

2008). Thus the simple stimulus, which informed the operator when to start the 

assembly operation during the experiment, did not significantly differ from industrial 

practice. Importantly, the appearance of the visual stimuli was programmed to match 

the pace of operations and be comparable to the industrial setting. 

Simulated operation consists of eight major production steps that can be summarized 

as follows (Figure 4-4): first, the information to initiate the simulated assembly 

operation is presented to the participant, in the form of visual stimulus (step 1), upon 

which he is instructed to instantly initiate the operation by taking the metal part 

(step 2) and the rubber hose (step 3). Following this, participants should place the 

metal part on the hose (step 4) and place both inside the crimping machine (step 5). 

Once the rubber hose and metal part are correctly placed inside the opening, the 

industrial green lamp lights and it presents a visual cue to the participant, informing 

him that the part has been correctly placed. Participant then proceed by promptly 

pressing the pedal, which initiates the improvised machine and replicates the real 

machines’ crimping sound with a duration of 3500 ms (step 6). The real crimping 

operation that would happen upon pressing the pedal was avoided, preserving its 

major aspects from operator’s perspective - the sound it produces and the cessation 

of which indicates the end of machine operation, analogously to the real case. Upon 

completion of the simulated crimping process, the participant removes the 

component and places it in the box with completed parts (step 7). Finally, following 
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these steps, the participant sits still, waiting for the subsequent stimulus (step 8) 

indicating the next-in-line operation. 

 

Figure 5-4: Graphical presentation of the step-by-step simulated crimping operation 

An important notion is that in presented experimental design, the recording of the 

reaction times (RTs) could not be measured in the traditional fashion, as the time 

elapsed between the stimulus presentation and the response by the participants 

(usually executed with the right index finger). Instead, the RTs here were measured 

as the time elapsed between the stimulus presentation (step 1) and the pedal press 

(step 6 from the, also depicted on the Figure 5-4). The pedal used in our study was 

actually a modified mouse button and it was connected to the recording computer 

via USB connection. This allows the calculation of RTs, as the difference between 

timestamps from stimulus presentation (operation initiation) and the beginning of 

the machine simulated crimping process (As indicated with the chronometer 

presented on the image of Step 1 and Step 6 from the Figure 5-4). 
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5.3.2 Experimental Procedure 

Experimental procedure was similar for all the experiments and it was described in 

detail in Mijović et al. (2016a), and this section is based on previously published work 

(Mijović et al., 2015a; Mijović et al., 2015b; Mijović et al., 2016a; Mijović et al., 2016b).  

During the experiments, at least two experimenters were constantly present in the 

laboratory in order to assure that experimental procedures were strictly followed. The 

experimenters were seated behind an opaque board (so that participants could not 

see them during the task) and they observed the participants through a RGB camera 

that recorded the whole experiment.  

Participants were seated in a comfortable chair in front of an improvised workplace 

including the improvised machine (Figure 5-4). As stated in Section 5.2, in order to 

extract the ERP component from continuous EEG recording, a functional 

modification in information presentation was presented to the participants, 

simultaneously with the simulated assembly process. The participants were 

subjected to the modified SART, which was named Numbers (Figure 5-5) and Arrows 

(Figure 5-6) task to prompt initiation of the assembly operation. Both tasks were 

presented on the 24’’ screen from a distance of approximately 100 cm.  The screen 

was height adjustable and the center of the screen was set to be level with 

participants’ eyes. Upon presentation of the stimuli on the screen, the participants 

were instructed to complete the previously explained assembly operation (as 

graphically presented in Figure 5-4). An important notion here is that in experimental 

studies presented in the Chapter 6 and 8, participants were completing solely the 

Numbers task, while in the studies presented in the Chapters 7 and 9, the 

participants were completing both the Numbers and Arrows task in the balanced 

order (with a 15 minutes break between the tasks).  

As explained in Mijović et al. (2016a), the original SART paradigm consists of 

consecutively presenting digits from ‘1’ to ‘9’ and participants are required to give the 

speeded response on all stimuli, with the exception of digit ’3’ (Robertson et al., 1997). 

The main difference between the original SART and Numbers paradigm is that the 

digits in Numbers are randomized, with the condition that forbid the appearance of 

two consecutive digits ‘3’ (‘no-go’ stimulus) and in between two ‘no-go’ conditions at 

least two ‘go’ conditions must appear. Thus, in our study participants were unaware 
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of the timing when the ‘no-go’ stimulus would appear. Further, in the original SART 

paradigm it is requested that participants provide the speeded response with the 

index finger upon the stimulus presentation. However, this would impede the 

simulation of the real working operation, since it would require an additional, task 

un-related operation from participants. Instead, in the Numbers paradigm, 

participants were instructed to initiate the assembly operation as soon as the visual 

(target) stimulus appeared on the screen, with whichever hand they felt more 

comfortable (they could freely choose between step 2 and 3 explained beforehand). 

Additionally, similarly to Dockree et al. (2007), five randomly allocated digit sizes were 

presented to increase the demands for processing the numerical value and to 

minimize the possibility that subjects would set a search template for some 

perceptual feature of the "no-go" trial (the digit ‘3’). Digit font sizes were 60, 80, 100, 

120 and 140 in Arial text font. 

 

Figure 5-5: Graphical representation of the Numbers task (Adopted from Mijović et al., 2016b) 
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The Arrows task was presented and explained in Mijović et al. (2016a). The stimuli 

and procedures for the Arrows task were adopted from the Donkers and Boxtel 

(2004). The Arrow task is also a “go/no-go” task, where the arrows pointing to the left 

and right appear on the screen; the white arrows represent the ‘go’ (target) condition, 

while the red arrows represent the “no-go” stimulus. Similarly to the Numbers task, 

the stimuli sequence in Numbers was randomized with the condition that forbade 

two consecutive appearances of the “no-go” stimuli. The main difference between the 

Numbers and Arrows tasks was that in the Numbers task participants could freely 

choose the hand with which they would initiate the assembly operation, while in the 

Arrows task, participants were required to initiate the action altering the hand 

according to the direction in which the white arrow on the screen was pointing. In 

other words, in the Arrows task the participants should initiate the action with the 

right hand (step 2) if the white arrow was pointing to the right, or with the left hand 

(step 3) if pointing left.  

 

Figure 5-6: Graphical presentation of the Arrows task (Adopted from Mijović et al., 2016b) 
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Regardless of the task, all the stimuli were presented for 1000ms on a black screen 

background. Each task consisted of 500 stimuli, where the probability of appearance 

of ‘no-go’ stimuli was set on 10% (50 in total), while the ‘go’ stimuli was presented 

450 times. The inter-stimulus interval (ISI) between two consecutive ‘go’ stimuli was 

on average 11240ms (STD = 410ms), while between ‘no-go’ and following ‘go’ stimuli 

the average ISI was 3210ms (STD= 120ms).  The duration of the each task was around 

one and a half hours, upon which participants had a 15 minute break, before starting 

the second task. Thus, the whole experiment lasted around three hours and fifteen 

minutes.   

The task specifications were programmed in Simulation and Neuroscience 

Application Platform (SNAP, available at https://github.com/sccn/SNAP), developed 

by the Swartz Center for Computational Neuroscience (SCCN). As explained in 

Bigdely-Shalmo et al. (2013) and Gramann et al. (2014), SNAP is a python-based 

experiment control framework that is able to send markers as strings to Lab 

Streaming Layer (LSL, available at https://code.google.com/p/labstreaminglayer/). 

The LSL working principle will be explained in detail in Section 5.5. 

5.4 Devices used in the study 

5.4.1 Physiological Sensors 

5.4.1.1 Wireless EEG System SMARTING 

EEG data acquisition was performed using state-of-the-art wireless EEG system 

SMARTING (mBrainTrain, Serbia), with the sampling frequency of 500 Hz and 24-bit 

data resolution (Figure 5-7a). The small in size and lightweight EEG amplifier 

(85x51x12mm, 60gr) is tightly connected to a 24-channel electrode cap, (Easycap, 

Germany) at the occipital site of the participants’ head, using an elastic band. The 

connection between the EEG amplifier and recording computer was obtained using 

Bluetooth connection (Bluetooth v2.1). The design of the cap-amplifier unit ensured 

minimal isolated movement of individual electrodes, cables, or the amplifier, which 

strongly reduced electromagnetic interference and movement artifacts. Further, small 

dimensions of the recording system provided full mobility and comfort to the 

participants, as movement constraints were not imposed. The electrode cap 

contained sintered Ag/AgCl electrodes that are placed based on the international 10-

https://github.com/sccn/SNAP
https://code.google.com/p/labstreaminglayer/
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20 System: Fp1, Fp2, Fz, F7, F8, FC1, FC2, Cz, C3, C4, T7, T8, CPz, CP1, CP2, CP5, 

CP6, TP9, TP10, Pz, P3, P4, O1 and O2 (as presented on the Figure 5-7b). The 

electrodes were referenced to the FCz and the ground electrode was AFz. Before 

initiation of the experiments, procedure set imposed that the electrode impedances 

must be below the 5kΩ value, which was confirmed by the device acquisition 

software. The device acquisition software is also capable of real-time data streaming 

through LSL to the lab recorder. 

 

Figure 5-7: (a) – wearable EEG system SMARTING and its position on the scalp of the recorded 

person; (b) Electrodes placement 

5.4.1.2 Wireless GSR device 

The wireless GSR device used in studies was developed at the University of 

Kragujevac. The GSR device is capable of exosomatic recording, using direct current. 

Sampling frequency is 40 Hz and the skin conductivity can be measured in the range 

between 0-120uS. Wireless operation: Bluetooth 2.4GHz, Class 2 is embedded in the 

device, for the real-time data acquisition on the recording computer, which are 

further streamed through LSL to the lab recorder. This was enabled through the 

stand-alone application developed at the department. The GSR device is also small 

and compatible, with the overall dimensions of 50x40x10 mm. The amplifier is 

connected to two Biopac-EL507 electrodes that have following specifications: Ag/AgCl 

contact (11 mm diameter), electrolyte wet liquid gel of 0.5% chloride salt, size 

27x36x1.5 mm. The electrodes are placed on inactive (left) foot, in order to reduce the 

movement artifacts, according to the recommendation from Bouscein (2012). The 

Device and electrode placements are graphically presented on the Figure 5-8. 
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Figure 5-8: (a) - Wireless GSR device; (b) - electrode placement (as depicted by numbers 1 and 

2) for exosmotic recording, as recommended by the Bouscein (2012) 

5.4.1.3 Wireless Heart Rate Sensor 

For the measurement of the Heart Rate, the CNS-SW5 (Canyon, Taiwan) commercial 

device was used (Figure 5-9a). The Canyon CNS-SW5 consists of chest strap 

(recording/transmission belt) and a watch, which is capable of receiving the instances 

of heartbeats' occurrence being transmitted from the chest strap using frequency of 

5500Hz. Due to this frequency, the transmitting range is short. In order to increase 

the transmitting range, the ECG monitor was developed by the Department of 

production Engineering, University of Kragujevac. The ECG monitor consists of signal 

receiver (from the transmitting belt) and AM transmitter, which sends impulses on 

frequency of 433.92 MHz. In this way, the transmitting range can be significantly 

improved. Finally, the radio receiver sends the radio impulses to the recording 

computer over the USB connection to the recording computer, and the stand-alone 

application was developed for the real-time signal acquisition and streaming the data 

to the lab recorder from the transmitting belt. The radio transmitter and radio receiver 

are depicted on the Figure 5-10. 

 

Figure 5-9: (a) - Chest strap; (b) - Positioning the chest strap on the participants' body; (c) – 

Graphical sketch of the chest strap, with the belonging elements (Adopted from device’s user 

manual) 
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The chest strap was placed on the participants chests (Figure 5-9b), as recommended 

by the supplier. Further, the conductive gel was placed on the conductive pads, in 

order to ensure a good contact with the skin at all times, during the experimental 

recording (Figure 5-9c). The CNS-SW5 is capable of recording the heart beats in the 

range between 30 and 240 beats/minute. 

 

Figure 5-10: Visual representation of the ECG monitor; left image: The receiver from the chest 

belt that sends the impulses (over transmitter) to the sends the radio receiver (right image), 

which sends the impulses to the recording computer via USB connection 

5.4.2 Motion Capture (MoCap) Devices 

5.4.2.1 Kinect 

During the simulated assembly operation, the upper-body movements of participants 

was recorded with KinectTM, which was placed in the replicated workplace, in a 

position above and in front of participants (as shown in the Figure 5-3). The motion 

data are interpreted in a form of a stick figure with the 10 key-points seated model 

that represent the key-points of the upper body (Figure 5-11). The Kinect was 

connected to the recording computer via USB connection and it is capable of 

recording with the sampling frequency of 30 frames per second (fps). Other technical 

characteristics of the Kinect device were already discussed in the Chapter 4.1.1. Real 

time data acquisition was obtained utilizing a MMK recorder, which was adopted and 

developed at the Laboratory for Multimedia Communications, Information 

Technologies (IT) department of Faculty of Organizational Sciences (FON), University 

of Belgrade. MMK recorder was developed in a way that it can independently record 

the obtained signals, but also it can stream the signals to the lab recorder over a LAN 

network (through the LSL). 
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Figure 5-11: Graphical representation of the upper-body seated model and key points: R/L P – 

Right/Left Palm, R/L W – Right/Left Whist, R/L E – Right/Left Elbow, R/L S – Right/Left 

Shoulder, H – Head, and CS – Central Shoulder 

5.4.2.2 Leap Motion 

Leap Motion device was used for estimation of the position of the hand key-points 

during manipulation of the low loads (rubber hose and metal extensions) at high 

frequency repetitions of manual assembly tasks. Leap Motion is capable of recording 

120 fps images for estimation of the hand key points (as depicted on the Figure 5-

12). For that aim, the Leap Motion device was placed in the working table, below the 

hands of the participants and under a transparent Plexiglas in order to prevent the 

potential damage to the device.  As already discussed in the Section 4.1.2, the Leap 

Motion sensor is more precise than the Kinect sensor, with the limitation that it can 

only record objects in close proximity. For the real-time data streaming to the lab 

recorder, a stand-alone application was developed by Miloš Milovanović, member of 

Laboratory of Multimedia Communications, FON, University of Belgrade. Other 

technical characteristics of the Leap Motion Sensor were provided in the Section 

4.1.2.   

5.5 System Architecture: Data Synchronization 

Section 5.4 briefly described the devices, used in the studies conducted for the aim 

of the presented dissertation. However, all the devices were developed separately and 

the biggest challenge was to synchronously record the different signal modalities that 

are heterogeneous in both, type and sampling rate. The synchronization should be 

precise down to millisecond order, since the ERP extraction requires the millisecond 

precision. This would not represent a major problem in the case where a common 

signal reference could be provided for each device. However, this would require that 
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all the devices have separate channel for physical synchronization, which would give 

rise to movement constraints for the participants in the study, thus limiting the 

application of the proposed system in the naturalistic environments. 

  

Figure 5-12: Graphical Representation of the projections of the hand key points when recorded 

with the Leap Motion Controller 

In order to overcome this difficulty the SCCN developed the Lab Streaming Layer (LSL) 

framework (https://code.google.com/p/labstreaminglayer/, accessed on 

11/12/2015). As explained in Bigdely-Shalmo et al. (2013) Gramann et al. (2014), 

LSL is a real-time data collection and distribution system that allows multiple 

continuous data streams as well as discrete marker timestamps to be acquired 

simultaneously in the lab recorder, in an eXtensible Data Format (XDF, available at 

https://code.google.com/p/xdf/, accessed on 11/12/2015). This data collection 

method provides synchronous, precise recording of multi-channel, multi-stream data 

that are heterogeneous in both type and sampling rate (Bigdely-Shalmo et al., 2013; 

Gramann et al., 2014), and is obtained via a local area network (LAN).  

LSL is capable of managing data collection in the experiments that involves 

concurrent recording through different devices. The usage of the LSL drivers requires 

all the recording computers to be on the same LAN network, since the LSL uses the 

https://code.google.com/p/labstreaminglayer/
https://code.google.com/p/xdf/
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User Datagram Protocol (UDP) to collect the data on one or multiple LAN computers 

(Gramann et al., 2014). Finally, LSL saves the data streams with the time markers 

that allows joint analysis of synchronous phenomena, as obtained from the diverse 

sensors modalities (Gramann et al., 2014). This allows the real-time computation of 

the obtained data streams. Moreover, it is possible to visualize the data in near-real 

time during acquisition, which allows better experiment control and supervision 

(Gramann et al., 2014). 

As the LSL library is an open-source project, acquisition software for each device was 

built in such a way to support data streaming over the LSL. Since the LSL was 

designed to achieve sub-millisecond accuracy 

(https://code.google.com/p/labstreaminglayer/, accessed on 11/12/2015), it was 

assumed to be precise enough for synchronizing EEG data with the other signal 

modalities used in the presented studies. 

For synchronously recording all the data streams, a lab recorder that was also 

developed by SCCN was used. As stated on the webpage of the LSL project, the lab 

recorder comes together with the LSL and it allows simultaneous recording of all 

streams on the lab network into a single XDF file. The XDF file format was developed 

simultaneously with the LSL and it supports all features of the LSL streams.  

Apart from the fact that all the devices’ drivers were capable of real time streaming 

the data to lab recorder, the SNAP  environment, which was used for running the 

experimental protocols (described in the Section 4.4), is also capable of sending the 

precise time stamps of appearing stimuli from both Numbers and Arrows tasks to the 

lab recorder. SNAP was built on top of the open source Panda3D game engine 

(www.panda3d.org) and uses Python as its primary scripting language (Gramann et 

al., 2014). SNAP allows relatively simple, script-level development of complex, 

interactive experimental paradigms and it can retrieve the signals from various input 

devices. This feature was used to attach the pedal through an USB port to the 

recording computer, with the aim of extraction of the behavioral modality of RTs. 

The overall system architecture for synchronous recording of all described streams is 

graphically depicted on Figure 5-13. 

https://code.google.com/p/labstreaminglayer/
http://www.panda3d.org/
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Figure 5-13: Overall system architecture design  
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6. Do Micro-Breaks Increase the Attention Level of an 

Assembly Worker? An ERP Study 

6.1 Introduction 

This Chapter is based on the published work, presented at the International 

conference “Applied Human Factors and Ergonomics (AHFE 2015)”, Mijović et al. 

(2015b). This study investigated the influence of micro-breaks on the attention of an 

assembly worker, by utilizing wireless EEG measurements.  

Manual assembly work is often highly repetitive and monotonous in nature, 

as workers are repeatedly completing the same operation up to few thousand times 

during the work-shift. This kind of work can lead to boredom, attention decline and 

mental fatigue of the workers (Fisherl, 1993). Moreover, the extended monotonous 

work is followed by decrease in motivation and morale of the worker that in the long-

term leads to mental stress, productivity decline and it can influence the end-product 

quality. In even worse scenario, the workers’ attention decline could lead to error in 

operating, causing work-related injuries, accidents and material damage (Kletz, 

2001).  

Majority of existing literature on manual assembly task is concerned with the 

physical aspects of such a workplaces, rather than mental states of the operators 

(Rasmussen et al., 1994). This is also reflected in studies of work/rest conditions in 

the workplace, where major concerns are related to the prevention of work-related 

musculoskeletal disorders (MSDs) through proposition of  various physical exercises 

in rest periods (Galinsky et al., 2007). However, far less attention has been dedicated 

to the influence of rest breaks on cognitive state of the workers.  

Understanding how the employees recover from work is important area of 

research in organizational and behavioral psychology (Trougakos and Hidieg, 2009). 

The influence of work vacations, weekends and end of the day activities breaks on 

job performance and well-being has been largely documented, while the influence of 

within the work-day breaks has received far less attention (Trougakos and Hidieg, 

2009; Fritz et al., 2013). During the work days, workers spend one-third of the day 

in the workplace, however they do not spend every moment engaged in the work task, 
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but also short breaks occupy one part of the work-day (Fritz et al., 2013). These 

breaks from the task can be structured performance-related and the ones relevant 

for maintaining the workers well-being, such as lunch or rest breaks (Fritz et al., 

2013). On the other hand, there are less structured forms of shorter breaks during 

the work, so called micro-breaks. The studies on micro-breaks suggest that they can 

be effective in reducing fatigue effects and increase in productivity of the worker 

(Trougakos and Hidieg, 2009).   

Although micro-breaks are frequently proposed as a method of reducing the 

strain and increasing the task engagement in work with VDU, such as data entry 

work position (Galinsky et al., 2007; Morris et al., 2008), their effect should be similar 

if applied in the manual assembly work, as both work position consist of sustained 

work repetitiveness in static work postures. The importance of micro-breaks was 

emphasized by OSHA through the following recommendation (OSHA, 2015): “High 

repetition tasks or jobs that require long periods of static posture may require several, 

short rest breaks (micro-breaks or rest pauses). During these breaks, users should 

be encouraged to stand, stretch, and move around. This provides rest and allows the 

muscles enough time to recover.”  

As previously stated, the majority of literature on influence of micro-breaks 

was mainly concerned with the prevention of work-related MSDs. Another path in 

studying the micro-breaks was the measurement of workers’ productivity and 

performance before and after taking a break. However, the main drawback of these 

studies is that methods for measuring overall performance are unreliable and they 

are unable to investigate underlying mental processes that are occurring before and 

after the break period (Parasuraman, 2003). In order to address this problem, the 

methodologies from the emerging field of neuroergonomics could be employed. As 

discussed in Chapter 2, the main advantage of neuroergonomics, over classical 

ergonomics approach, is that it provides precise analytical parameters depending on 

the work efficiency of individuals, by directly investigating relationship between 

neural and behavioral activity (Fafrowicz and Marek, 2007). In this way, it is possible 

to avoid unreliable user state evaluation based on theoretical constructs, which are 

describing cognitive states of the workers related to the task execution (Fafrowicz and 

Marek, 2007). 
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Neuroimaging technique that was used in present neuroergonomics 

experimental study was wireless EEG. Specific EEG feature of interest in studying 

attention is the P300 ERP component, since it has been widely documented that the 

amplitude magnitude of the P300 component is directly related to the level of person’s 

attention (Murata et al., 2005). The P300 component is sometimes bifurcated, 

containing two sub-components P3a and P3b and although the P300 component is 

generally related to attentional processing, the mechanisms that generate P3a and 

P3b subcomponents significantly differ. It has been reported that the P3a component 

is more related to novelty preference and low-level attentional processes, while P3b 

component was found to be more related to high-level attentional processing and 

processing of endogenous aspects of stimuli (Polich, 2007).  

In this work the influence of the micro-breaks on the attention level of an 

assembly worker was investigated, through the analysis of P300 ERP component’s 

amplitude. The study was conducted in faithfully replicated workplace (as presented 

in Chapter 5, Section 5.2), where participants simulated manual assembly work, 

explained in Chapter 5, Section 5.3.1. The hypothesis that the higher P300 

component, and especially the P3b subcomponent, amplitude would have higher 

magnitude following the period of micro-break than preceding it, was tested.  

6.2 Methods 

6.2.1 Participants 

Nine healthy subjects, all right-handed males, aged between 19 and 21 years 

volunteered as participants in the study. Study was restricted to male participants   

in order to exclude possible inter-gender differences and to replicate the selected job 

task more faithfully. Participants had no past nor present neurological or psychiatric 

conditions and were free of medication and psychoactive substances. They were 

instructed not to take any alcoholic drinks on the day before and the day of 

participation in the study, as well as not to drink coffee at least three hours prior 

their participation in the study. All participants had normal or corrected-to-normal 

vision. They have agreed to participation and signed informed consent after reading 

the experiment summary. The study was approved by the Ethical committee of the 

University of Kragujevac. 
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6.2.2 Experimental Setup 

Experimental setup was explained in detail in Chapter 5, Section 5.2 

6.2.3 Experimental Procedure 

Each of the participants arrived in the laboratory at 9:00 a.m. Upon carefully reading 

the experiment summary and signing the informed consent for participation in the 

study, participants started the 15-minute training session in order to get familiar 

with the task. Finally, EEG cap and amplifier were mounted on the participants’ head 

and the recording started around 9:30 a.m. Participants were seated in the 

comfortable chair in front of the improvised machine. In this study, solely the 

Numbers paradigm (explained in the Chapter 5, Section 5.3.2) was used. The 

Numbers task was presented on the 24” screen from a distance of approximately 100 

cm. The screen was height adjustable and the center of the screen was set to be in 

level with participants’ eyes.  

6.2.4 ERP processing 

EEG analysis was performed offline using EEGLAB (Delorme and Makeig 2004) 

and MATLAB (Mathworks Inc., Natick, MA). EEG data were first bandpass filtered in 

the 1-35 Hz range. The EEG signals were then re-referenced to the average of Tp9 

and Tp10 electrodes. Further, an extended Infomax Independent Component 

Analysis (ICA) was used to semi-automatically attenuate contributions from eye blink 

and (sometimes) muscle artifacts (De Vos et al., 2011; De Vos et al., 2010; Viola et 

al., 2009).  

Upon EEG data pre-processing, ERP epochs were extracted from -200 to 

800ms with respect to timestamp values of “go” stimuli preceding and following “no 

go” stimuli indicated by SNAP software. Baseline values were corrected by subtracting 

mean values for the period from -200 to 0 ms from the stimuli In the ERP analysis. 

The identified electrode sites of interest for the ERP analysis in this study were Fz, 

Cz, CPz and Pz, as the P300 component is usually distributed and is most prominent 

over the central and parieto-central scalp locations (Picton, 1992). Further, mean 

grand average (GA) values of the ERPs were extracted and the magnitudes of the P3a 

(250-350ms window) and P3b (350-500ms window) components were calculated, 

using the mean amplitude method (Luck 2014). Finally, a repeated measures ANOVA 
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was performed in SPSS, with the aim to compare the amplitude values in the P3a and 

P3b window, before and after the micro-break period. 

6.3 Results 

The GA values of ERPs preceding and following the micro-break periods are 

graphically represented on Figure 6-1. It is notable that the amplitude of the P3b 

subcomponent had higher magnitude for the trials following the micro-break period 

(red line), than preceding it (grey line), on all electrode sites. However, this was not 

obvious in the P3a amplitude window. 

P3a analysis (250-350ms): Repeated measures ANOVA with 2 within-subject 

factors (electrode SITE - Fz, Cz, CPZ and Pz and TIME - before vs. after the micro-

break, i.e. ‘no-go’ trial), revealed a significant effect of SITE (F(3, 24)= 11.86, p<0.01), 

but no significant effect of TIME and there was no interaction effect. Amplitudes at 

Cz and Fz were significantly higher in comparison to the amplitudes at CPz and Pz 

sites (p<0.05). 

 

Figure 6-1: ERP waveforms on Fz, Cz, CPz and PZ electrode sites. Red line – GA ERPs 

following the micro-break period; Grey line – GA ERPs preceding the micro-break period. The 

P3a and P3b sub-component are depicted on the upper-left image. 
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P3b analysis (350-500ms): Repeated measures ANOVA with 2 within-subject 

factors (electrode SITE - Fz, Cz, CPZ and Pz and TIME - before vs. after micro-break, 

i.e. ‘no-go’ trial), revealed a significant effect of TIME (F(1, 24)= 5.43, p<0.05), but 

there was no significant effect of SITE and the interaction between SITE and TIME 

was also not significant. The detailed comparisons revealed that the amplitudes at all 

four sites were higher after the micro-break in comparison to the amplitudes before 

the break (p<0.05), in P3b window (see Figure 6-2). 

 

Figure 6-2: Comparisons between the P3b amplitudes before (grey bars) and after (red bars) 

the micro-break period (p<0.05). Error bars: +/-2 SE 

6.4 Discussion 

The results of this study indicated that there is a significant difference in the P3b 

amplitude between the conditions preceding and following the micro-break period, 

while this was not the case with the amplitude of the P3a sub-component. This 

finding supports the main hypothesis and confirms that the amplitude of the P3b 

sub-component, which is related to the higher-level attention processing (Polich, 

2007), was affected on all electrode sites and it had higher magnitude following the 

micro-break period than preceding it. On the other hand, the difference in the 

amplitudes of the P3a sub-component, which reflects the low-level attention 
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processes (Polich, 2007), before and after the micro-break period did not reach the 

statistical significance. 

Regarding the industrial work organization, one could argue about the timing 

and the length of the rest periods during the shift. The most common approach of 

managing the rest periods is that workers are allowed to take one long, lunch break 

(approximately 30 minutes), and up to two additional break periods of shorter 

duration (Dababneh et al., 2001). However, it was found that limited rest-break 

opportunities are significantly related to MSD and that shortcomings in work-rest 

schedules increase the likelihood of near misses and injury events (Faucett et al., 

2007). Another approach, proposed by NIOSH is that workers should be provided 

with additional 5-minute breaks for each hour working and it was suggested that 

modified rest break schedules have resulted in significant reductions of these 

symptoms among workers, while modestly improving the productivity (Dababneh et 

al., 2001; Faucet et al., 2007). Present study differs from (Dababneh et al., 2001) in 

a way the participants were provided by the breaks and in total, in this study 

participants had shorter total-time break period than in (Dababneh et al., 2001). In 

fact, in our experimental settings participants had 50 micro-break periods (of 5s) 

during the experiment, which is cumulatively, approximately 3-minute break period 

for one hour of active engagement to the task. We have shown that higher frequency 

of short breaks produce the higher attention level of the workers, following the break 

periods. Therefore, the attention level of the workers could be maintained throughout 

the workday by including frequent micro-breaks, potentially preventing the workers 

injuries that are caused by attention decline, while not affecting the productivity of 

the workers. 

Although this study showed that frequent micro-breaks period increases the 

attention level of workers engaged in assembly tasks, it should be further extended. 

The future work should include the variation of the length of micro-breaks, with aim 

to investigate whether the longer breaks would produce higher attention levels. 

Finally, an optimal micro-break period should be defined with the aim of increasing 

the attention level of the worker and improve the workers well-being, while enhancing 

productivity. 
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6.5 Conclusion 

Recently available wireless EEG sensors provided the possibility to examine how the 

brain process various stimuli in applied environments. Presented study utilized the 

wireless EEG measurements in simulated assembly task, with the aim of examination 

whether the frequent micro-breaks periods are influencing the attention level of the 

assembly workers. The main finding was that the amplitude of P3b ERP sub-

component, which is directly related to the high-level attention processing, had 

higher magnitude following than preceding the micro-break period. The results 

indicate that the workers on manual assembly line should have frequent short-breaks 

in order to maintain their attention level during the work-shift. In this way, the 

attention decline and boredom of the workers could be suppressed, improving the 

overall assembly workers’ well-being. Finally, the introduction of frequent micro-

break periods in regular work routine could yield less frequent occurrence of the 

work-related injuries, which could be caused by the attention decline of the workers. 
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7. Benefits of Instructed Responding in Manual 

Assembly Tasks: An ERP Approach 

7.1 Introduction 

This Chapter is based on the work of Mijovic et al. (2016b). The main notion is that 

the majority of neuroergonomics studies are focused mainly on investigating the 

interaction between operators’ and automated systems; while far less attention has 

been dedicated to the investigation of brain processes in more traditional workplaces, 

such as manual assembly, which are still ubiquitous in industry.  

The aim of this paper is the investigation of assemblers’ mental states, by utilizing 

ERPs in a realistically replicated workplace. Neuroergonomics governs that overt 

performance measurements are unreliable (Parasaruman, 2003), since they do not 

provide the possibility for timely investigation of the underlying covert cognitive 

processes during everyday tasks. To get better insights into the time course of the 

underlying attention processes engaged in manual assembly operation, we selected 

two tasks in which we triggered goal-directed actions of workers by presenting them 

either digits (in one) or arrows (in the other task) prior initiating the operation. In this 

way we wanted to elicit the P300 ERP component (Also called P3 or P3b), which is 

represented by the positive ERP voltage deflection that usually appears between 300 

and 500ms after appearance of the task-relevant stimuli (Verleger et al., 2005; Polich 

and Kok 1995). The P300 component is often used to identify the depth of cognitive 

information processing and its amplitude and latency are considered to be related to 

the human attention level (De Vos et al.  2014; Johnson 1998; Polich 2007).  

The P300 complex is the most prominent over the midline scalp sites (Polich 2007) 

and it is among the most prominent ERP components (Verleger et al., 2014), thus 

being one of the most studied components of the human ERP. However, it is still 

argued about what brain functions the P300 component represents (briefly 

summarized in the Verleger et al., 2014). One influential view is that the P300 

component can be explained through the context updating hypothesis that was 

proposed by Donchin (1981) and which governs that the P3 reflects the updating of 

working memory that is related with task-relevant and unexpected events. The 

context updating theory assumes that the mental process that elicit the P3 
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component reflects a revision of the model of the environment rather than it serves 

for organizing response to the eliciting stimulus (Verleger et al., 2005). In other words, 

it is assumed that following an initial sensory processing, an attention-related 

process evaluates the presentation of the previous event in working memory and if a 

new stimulus in a train of standard stimuli is detected, the attention-related process 

updates, which is followed by production of the P300 component (Polich, 2007). 

However, we have also witnessed arguments against the context updating theory 

(Verleger et al., 2005; Verleger et al., 2014). In fact, Verleger et al. (2005) proposed a 

new hypothesis in which they stated that the P300 component is related both to 

stimuli processing and organizing the response. In order to prove this hypothesis, 

Verleger et al. (2005) compared the P3 amplitude in stimulus- and response-locked 

ERPs and they found that both P3 amplitudes were comparable. Therefore, it was 

confirmed that P300 amplitude does not reflects just the simple reaction to stimulus 

change. Rather, P300 reflects a process that mediates between perceptual analysis 

and response (Verleger et al., 2005), i.e. it is related to the organization of the 

response and it depends on the stimulus-response links (Verleger et al., 2014).   

Based on these findings, the present study investigated whether and how the neural 

correlates of goal-directed actions would differ if the operators were requested to 

initiate the simulated assembly operation spontaneously (upon seeing a digit), as 

opposed to the condition where participants were instructed with which hand to 

commence the operation (upon seeing an arrow). In the spontaneous condition (the 

Numbers task), we adopted the stimuli from the original SART paradigm that is a 

simple ‘go/no-go’ task, which consists of consecutively presenting digits from ‘1’ to 

‘9’ and participants are required to give the speeded response on all stimuli, with the 

exception of digit ’3’ (Robertson et al., 1997). The main difference between the original 

SART and the Numbers paradigm (used in our study) is that the digits in Numbers 

are randomized. Further, in the original SART paradigm it is requested that 

participants provide the speeded response with the index finger upon the stimulus 

presentation. However, this would impede the simulation of the real working 

operation, since it would require an additional, task unrelated operation from 

participants. Instead, in the Numbers paradigm, participants were instructed to 

initiate the assembly operation as soon as the visual (target) stimulus appeared on 

the screen, with whichever hand they felt more comfortable (the assembly operation 
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is explained in detail in Section 2.3). For the instructed responding (the Arrows) task, 

we adopted the stimuli and procedures from the Donkers and Boxtel (2004). The 

Arrows task is essentially the choice reaction task, where the arrows pointing to the 

left and right appear on the screen; the white arrows represent the target (‘go’) 

condition, while the red arrows represent the ‘no-go’ stimulus. The main difference 

between the Numbers and Arrows tasks was that in the Numbers task participants 

could freely choose the hand with which they would initiate the assembly operation, 

while in the Arrows task, participants were instructed to commence each operation 

with the hand that corresponds to the direction in which the white arrow on the 

screen was pointing. An important notion is not only the simple stimuli difference 

between the tasks was varied (digit vs. arrow), but also the informational value of 

those stimuli: the Arrows task arguably requires stimulus-response mapping, which 

in turn  requires more cognitive evaluation, which consequently induces higher-level 

attentional processing than in simple ‘go/no-go’ task. In both, the task specific and 

spontaneous condition, the visual stimuli (digits and arrows) appeared in the center 

of the screen that was placed in front of the participants. 

We expected attention, when assessed through the P300 amplitude, to be more 

enhanced in the instructed responding (Arrows) task, compared to the one where 

participants could initiate the assembly operation upon seeing the task unspecific 

cue (Numbers task). Further, we wanted to investigate whether the difference in the 

task condition would also influence the reaction times (RTs), as the performance of 

the participant’s is also important, since this study simulates the naturalistic 

assembly task replicated from the industry. In other words, we wanted to investigate 

whether the participants would be slower in the case when they are instructed with 

which hand hey should start the assembly operation, as compared to the condition 

when they can spontaneously initiate the assembly operation with whichever hand 

they prefer.  

7.2 Methods 

7.2.1 Participants 

Seventeen healthy subjects, from which one was left-handed, aged between 19 and 

21 years volunteered as participants in the study. Due to abnormalities in the 



 

 

92 

 

recording three subjects were excluded from further analysis, leaving fourteen 

participants. The study was restricted to male participants both to exclude possible 

inter-gender differences and to replicate the selected job task more faithfully, since 

in company that supported this research only male population occupy the specific 

workplace under study. Participants did not report any past or present neurological 

or psychiatric conditions and were free of medication and psychoactive substances. 

They were instructed not to take any alcoholic drinks prior to, nor on the day of 

participation in the study. All participants had normal or corrected-to-normal vision. 

They agreed to participate in the study and signed informed consent after reading the 

experiment summary in accordance with the Declaration of Helsinki. The Ethical 

Committee of the University of Kragujevac approved the study and procedures for the 

participants. 

7.2.2 Experimental Setup 

Experimental setup was explained in detail in Chapter 4, Section 4.2 

7.2.3 Experimental Procedure 

Each of the participants arrived in the laboratory at 9:00 a.m. Upon carefully reading 

the experiment summary and signing the informed consent for participation in the 

study, participants started the 15-minute training session in order to get familiar 

with the task. Finally, EEG cap and amplifier were mounted on the participants’ head 

and the recording started around 9:30 a.m. Participants were seated in the 

comfortable chair in front of the improvised machine. In this study, both, the 

Numbers and the Arrows paradigm (explained in the Chapter 4, Section 4.3.2) were 

used in balanced order, and the participants had a 15-minutes break between the 

tasks. Both tasks were presented on the 24” screen from a distance of approximately 

100 cm. The screen was height adjustable and the center of the screen was set to be 

in level with participants’ eyes.  

7.2.4 ERP Processing 

EEG signal processing was performed offline using EEGLAB (Delorme and Makeig, 

2004) and MATLAB (Mathworks Inc., Natick, MA). EEG data were first bandpass 

filtered in the 1-35 Hz range, following which the signals were re-referenced to the 

average of the mastoid channels (Tp9 and Tp10). Further, an extended infomax 
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Independent Component Analysis (ICA) was used to semi-automatically attenuate 

contributions from eye blink and (sometimes) muscle artifacts (as explained in Viola 

et al., 2009; De Vos et al., 2010; De Vos et al., 2011). After this data preprocessing, 

ERP epochs were extracted from -200 to 800 ms with respect to timestamp values of 

‘go’ and ‘no-go’ stimuli indicated by the SNAP software. Baseline values were 

corrected by subtracting mean values for the period from -200 to 0 ms from the 

stimuli. The identified electrode sites of interest for the ERP analysis in this study 

were Fz, Cz, CPz and Pz. 

Following the ERP extraction, the mean grand average (GA) ERPs were 

calculated. For the ‘go’ condition, the GA ERP was calculated for the ERPs that 

preceded the ‘no-go’ condition.  The P300 amplitude was calculated for both ‘go’ and 

‘no-go’ conditions and for each experimental condition, using mean amplitude 

measure (Luck, 2014) in the time window from 230 to 450 ms, with regard to the 

time stamps of the stimuli. Finally, the statistical analysis on the obtained results 

was carried out. 

7.2.5 Reaction Times 

As already stated in Section 5.2, the experimental design did not allow subjects to 

react with the button press upon seeing the visual ‘go’ stimulus. Therefore, the 

reaction time (RT) could not be measured in the traditional fashion, as the time 

elapsed between the stimulus presentation and the response by the participants 

(usually executed with the right index finger). Instead, the RTs here were measured 

as the time elapsed between the stimulus presentation (step 1) and the pedal press 

(step 6 from the 5.3.1 section, also depicted on the Figure 5-4). The pedal used in the 

study was actually a modified mouse button and it was connected to the recording 

computer via USB connection. As LSL is capable of real-time recording of the 

timestamps of the mouse button press, it enabled us to gather precise information 

regarding the time when pedal was pressed.  This allows the calculation of RTs, as 

the difference between timestamps from stimulus presentation (operation initiation) 

and the beginning of the machine simulated crimping process. 
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7.2.6 Error Processing 

The errors of omission were classified as the errors when participants omitted the 

appearance of ‘go’ stimuli. The commission errors processing was challenging, since 

our task did not require speeded button press and therefore, the errors of commission 

were difficult to interpret. In fact, the most obvious classification of commission errors 

would be when participants completely execute the simulated operation upon 

appearance of the ‘no-go’ stimuli. However, it is important to note that participants 

sometimes made slight movements upon appearance of the ‘no-go’ stimuli (in sense 

that they showed intention to initiate the action) and then they inhibited the response 

upon realization that it was a ‘no-go’ stimuli. This kind of errors we classified as the 

near-misses. The quantification of the near misses and commission errors was 

conducted by the experimenters in the room, but also in an off-line analysis by 

replaying the videos recorded with the RGB camera during the experiment. 

7.2.7 Statistical Analysis 

The statistical analysis was performed using IBM SPSS software. The ERPs used for 

statistical analysis included all ERPs related to the “no-go” condition and 50 ERPs 

related to “go” preceding the “no-go” condition. The 4x2x2x2x2 repeated measures 

ANOVA was conducted with SITE (Fz, Cz, CPz and Pz) and Period of measurement 

(first vs second half) as within subject factors and Task (Arrow vs SART), ‘go/no-go’ 

and Order of presentation (first vs second) as between subject factors, respectively. 

Additionally, the 2x2x2 ANOVA comparing reaction times (RTs) across Period of 

measurement (first vs second half) as within subject factors and Task (Arrow vs 

Numbers) and Order of presentation (first vs second) was conducted. Finally, the 

2x2x2 ANOVA was performed, comparing commission errors and near misses across 

Period of measurement (first vs second half) as within subject factors and Task (Arrow 

vs Numbers) and Order of presentation (first vs second). Greenhouse-Geissser 

corrections (FG) were applied where necessary. 
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7.3 Results 

7.3.1 ERP Results 

The GA ERPs for each task (Arrows and Numbers), each condition (‘go/no-go’) and 

each electrode site under study (Fz, Cz, CPz and Pz) are depicted on Figure 7-1. 

 

 

Figure 7-1: Graphical representation of the GA ERPs for each task and each electrode location 

under study. The black line represents the ‘go’ condition, while the grey line depicts the GA 

ERPs for the ‘no-go’ condition. 

The ERPs differed depending on the condition (Go/No-Go: F(1,96)=25.74, p<.000, 

η=0.21), the task (Task: F(1, 96)=13.43, p<.000, η=.123), the order of presentation 

(Order of presentation: F(1,96)=10.75, p<.001, η=.10) and across the scalp (SITE: 

F(3,94)=11.41, p<.000, η=0.11). Namely, the P300 amplitudes elicited for ‘go’ trials 

were higher than for ‘no-go’ trials (M =5.73, sd = 4.19; M =2.25, sd = 3.85, 

respectively). Further, the Arrow task produced higher amplitudes in comparison to 

Numbers (M =5.24, sd = 4.33; M =2.73, sd =4.07, respectively). The P300 amplitudes 

elicited with regard to the Order of presentation demonstrated higher amplitudes for 

whichever task was presented first in comparison to second task (M =5.11, sd = 4.28; 

M =2.86, sd = 4.19, respectively). Finally, amplitudes elicited at Pz were significantly 
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higher than the amplitudes at the other three sites and amplitudes at CPz site were 

higher than at Cz and Fz sites at the p<.05 level. All the other comparisons were 

significant in the same direction apart from the Fz-Cz difference.   

Figure 7-2 depicts the GA ERPs elicited over all four electrode sites under study for 

the ‘go’ condition. 

 

Figure 7-2: The GA ERPs elicited for ‘go’ condition in all four experimental conditions. ERPs 

elicited for The Numbers task are represented with the grey color, while the ERPs elicited in 

the Arrows task are depicted with the black color. The full line represents that the task was 

presented as a first task and the dashed line if the task was presented as second task. 

Besides these main effects, we observed a significant two-way interaction effect 

between SITE and Order of presentation (F(3,94)=5.49, p=.014, η=.05), a significant 

two-way interaction effect between Task and Order of presentation (F(3,94)=9.4, 

p=.003, η=.09), as well as a three-way interaction between SITE, Task and Order of 

presentation (F(3,94)=6.78, p<.006, η=0.07). The amplitudes were smaller for the 

Numbers task only when it was presented as a second task and this was true at Cz, 
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CPz and Pz, but not for the Fz electrode (all post-comparisons were significant at 

p<.05). 

The P300 amplitude differences for all four sites and depending on the task 

representation order are presented in Figure 7-3. 

 

Figure 7-3: The amplitude values for all four-electrode sites and for all experimental 

conditions. The black color depicts the Arrows task, while the Numbers task is represented 

with the grey color. 

7.3.2 Reaction Times Results 

The 2x2x2 ANOVA comparing reaction times (RTs) across Period of measurement 

(first vs second half) as within subject factors and Task (Arrow vs SART) and Order 

of presentation (first vs second) revealed neither significant main effects, nor 

interaction effects.   
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7.3.3 Errors 

The participants did not make any omission errors. Regarding commission errors, 

across all the participants and all the experimental conditions, we observed only 

seven errors. Statistical analysis revealed neither main effects nor interactions in this 

case. However, regarding near-misses, the ANOVA revealed only a significant effect 

of task (f(1,94) =17.26, p<.01) with the participants making more near-misses in 

Numbers compared to the Arrows task.  

7.4 Discussion 

The present study investigated whether operators’ attention is enhanced when they 

are instructed with which hand to initiate the manual assembly operation, as 

compared to spontaneous and free choice of preferred hand. The attention was 

assessed through the P300 amplitude, as it is widely accepted that the P300 

amplitude is positively related to the human level of attention (Ford et al., 1994; 

Polich 2007; De Vos et al., 2014). For this aim we simulated a manual assembly 

operation, where we provided the participants with two distinct psychological tasks 

(Numbers and Arrows) simultaneously with the simulated operation.  

The P300 components’ amplitude was significantly higher in magnitude for the 

frequent ‘go’ (target), than for the infrequent ‘no-go’ condition (as presented on the 

Figure 3). This finding is in contrast to the majority of previously reported studies 

where an infrequent target condition elicits a higher magnitude of the P300 

amplitude, since the participants are usually required to note the occurrence of 

infrequent targets by button press or by silent counting (Struber and Polich, 2002). 

On the other hand, in our task target stimuli were the frequent ones, as the continuity 

of operation in manual assembly is essential, while the participants were instructed 

just to sit still and with no actions during the infrequent ‘no-go’ condition. As such, 

it is not surprising that the lower magnitude of the P300 amplitude were elicited in 

infrequent non-target condition, as passive stimulus processing induces smaller 

P300 amplitudes than active tasks (Polich 2007). This was also supported by the 

results from the study of Potts et al. (2001), where they reported that the P300 

amplitude was larger in frequent ‘go’ condition as compared to rare non-target 

condition in the task where the ratio between ‘go’ and ‘no-go’ condition was 80/20. 
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Moreover, it was found that the inter-stimulus interval (ISI) between target stimuli 

influences the P300 amplitude, in sense that short ISI lead to decrease in amplitude, 

while relatively long ISIs elicit the higher P300 amplitude, which is the case even in 

the single-stimulus paradigm (Struber and Polich 2002; Polich 2007). This was the 

case also in our study, since the ISI was relatively long (approximately 11s) and we 

believe that it was suitable for eliciting the P300 amplitude even in the frequent target 

condition. 

The main finding of the present study is that the P300 amplitude was conclusively 

higher in magnitude when participants were instructed with which hand to initiate 

the simulated assembly operation, as compared to the case when participants could 

freely choose the preferred hand for the operation initiation. This may not be 

surprising, since in the choice reaction task (Arrows) participants were subjected to 

slightly higher demands of the incoming stimuli evaluation, as they were un-aware 

of the direction in which the white arrow stimuli would point. On the other hand, the 

digit stimulus carries considerably lower information, as participants are required 

just to make distinction whether it is a ‘go’ or ‘no-go’ stimuli and to perform their 

action accordingly, i.e. the participants may stop evaluating the content of the stimuli 

after some time. Therefore, the response selection requirements during the Arrows 

task are substantially higher than in Numbers task, which may lead to increased 

P300 amplitude in condition which required instructed responding of the participants 

(Verleger et al., 2005; Verleger et al., 2014). Interestingly, even though it was expected 

that the RTs could differ between the two tasks, this was not the case. The number 

of commission errors was relatively low and it did not differ between the tasks. 

However, there was significantly higher amount of near-misses in the Numbers than 

in the Arrows task. The fact that there was larger number of near-misses in the 

Numbers task may be expected, as the Arrows task imposes a higher workload to the 

participants, due to the higher response selection requirements, and as it was 

previously reported, the errors and mental workload are related according to the U-

shaped curve (Desmond and Hoyes, 1996). From all discussed above, it may be 

proposed that the workers on repetitive and monotonous assembly task should not 

receive information solely on whether they should initiate the operation or not, but it 

should be beneficial if they would receive information that carries slightly higher 

cognitive demands. In fact, the task that consisted of the stimuli with the higher 
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cognitive demands induced the higher P300 amplitude, which may be related to the 

attention of the worker for the task in hand. Another important notion is that the 

difference between the task conditions was not visible in the measured RTs, which 

may constitute one of the important findings of the present study: that the overt 

performance based measures in a naturalistic environment are not accurate enough, 

which is in line with one of the main postulate of the Neuroergonomics (Parasuraman 

2003). This study supports the notion of the Parasuraman (2003) that the 

measurement of covert cognitive processes should be adopted in HF/E studies.    

Although we showed that the Arrows task produced a higher P300 amplitude than 

the Numbers task, one could argue about the selection of the tasks, as the stimuli 

type between task conditions significantly differ (digits vs. arrows). The main reason 

for not investigating the difference between instructed and non-instructed condition 

with the same type of stimuli was the avoidance of the interference effect (Pashler 

1994). In fact, if only stimuli from Numbers task were used and dedicated the 

directions to specific digits in hand instructing task (e.g. odd numbers means left and 

even numbers right hand first), it would be highly likely that the memory would 

strongly influence the attention processing. On the other hand, if we only used the 

Arrows stimuli type, the undesired bias would be included in the condition when 

participants could initiate the operation with their preferred hand. An additional 

concern is whether the two distinct psychological tests trigger different attentional 

resources, given that they are composed of different stimulus types and that the 

Arrows task alternates the response hand, while in the Numbers task participants 

could respond with whichever hand they preferred. The answer to this doubt could 

be found in premotor theory of attention (Rizzolatiet al., 1994), which governs that 

the attention orienting processes are triggered during unimanual response 

preparation and that the orienting processes are assumed to be equivalent to the 

processes elicited during instructed endogenous shifts of spatial attention (Eimler et 

al., 2005). Moreover, Ranzini et al. (2009) also used the tasks with Arabic digits and 

Arrows and they demonstrated that processes evoked by these cues are alike and 

that the volitional and non-volitional attentional shifts rely on the same fronto-

parietal brain networks. Thus, both Numbers and Arrows tasks should evoke the 

same cognitive resources of attention, which gives the legitimacy to the choice of the 

tasks used in this study. 
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Another interesting finding from this study could be implemented in job rotation 

strategy. Job rotations in assembly lines are often proposed as method for reducing 

the monotony of the task, thus keeping the workers more focused (Michalos et al., 

2010b). In fact we found that the lowest P300 amplitude values were obtained when 

the numbers (less demanding task) was presented as a second task, i.e. the data 

revealed that if a less demanding task follows a more demanding task, the 

participants’ attention was lowered. Thus, we propose that job rotations on assembly 

tasks should be organized in such a way to avoid that the more demanding task is 

followed by the task which is more monotonous in nature. However, this notion 

should be investigated thoroughly in future studies.  

One of the limitations of the present study is that it was conducted in a simulated 

working environment, instead of a real factory setting. The main reason for this was 

usage of the wet-electrode EEG recording system, which is still uncomfortable for 

application in actual industrial environments. Nevertheless, we replicated both the 

spatial dimensions and ambient conditions and performed the wearable EEG study, 

demonstrating its applicability for the investigation of covert cognitive processes in 

naturalistic environments for HF/E studies. Another limitation is that, 

simultaneously with the simulated operation, we used two distinct psychological 

tests, with the aim of eliciting the P300 ERP component. Although it could be argued 

that psychological tests could interfere with the simulated operation, an important 

notion is that the assembly workers should be provided with timely information 

regarding the performed operation (Stork and Schubo 2010).  Therefore, we believe 

that this modification did not significantly differ from the actual assembly operation 

in industrial environments. Moreover, in naturalistic settings it is usually hard to 

isolate and analyze the specific cognitive process, since they should first be evoked 

and co-occurring cognitive factors should be isolated (Bulling and Zander 2014). 

Thus, this modification in the information presentation to the participants was 

necessary in order to elicit the anticipated P300 ERP component during the simulated 

assembly operation. Unfortunately, the present study is unable to compare brain 

responses between self-paced (as in this specific workplace) and externally paced 

work routines that we used in our study. This issue should be addressed in future 

studies. 
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The present study demonstrated that wearable EEG recording could be beneficial for 

task design in HF/E studies. Future studies should investigate whether the reported 

findings also hold for similar job positions, which are monotonous and repetitive in 

nature but require continuous focus of the worker on the industrial task (e.g. quality 

control tasks). Although the present study utilized wearable EEG in a faithfully 

replicated workplace environment, it seems that it is just a matter of time until EEG 

systems will be willingly accepted for everyday use (Van Erp et al., 2012; Mihajlović 

et al., 2015). This could even lead to the application of passive brain-computer 

interfaces, which could be used for real-time assessment of the cognitive user states 

in industrial environments (Zander and Kothe, 2011). Nevertheless, the fact that it is 

nowadays possible to investigate brain dynamics during natural movements (without 

imposing movements constraints) of the recorded individual brings us a step closer 

to the guiding principle of the neuroergonomics, that is, to investigate how the brain 

carries out the complex tasks of everyday life and not just simplified and artificial 

tasks in the laboratory settings (Parasuraman and Rizzo, 2006).   

7.5 Conclusion 

Comparing monotonous (‘go/no-go’) Numbers task to the choice-reaction (Arrows) 

task, which instructs the participants with which hand to initiate the assembly 

operation, we found that the latter was more suitable to preserve participants' 

attention during the externally paced assembly task. This finding was achieved 

through investigation of the ERP waveform, where it was found that the P300 

amplitude, which is related to the level of attention, was enhanced in the task that 

instructed the participants with which hand to initiate the simulated assembly 

operation. Regardless of the order of presentation, the P300 amplitudes were 

comparably high, whereas, the drop of attention was evident in the Numbers when 

presented as a second task. Our findings suggest that in monotonous assembly 

tasks, instructed responding, or a similar method of engagement, should be imposed 

on operators as it enhances their attention level. Finally, stemming from the notion 

that a drastic drop in P300 components’ amplitude was notable when the Numbers 

task was performed as second, we propose that job rotations on the assembly line 

should be organized in such a way that the demanding task should not be followed 

by the more monotonous one.  
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8. Towards Continuous and Real-Time Attention 

Monitoring at Work: Reaction Time versus Brain 

Response 

8.1 Introduction 

This chapter is based on the published work (Mijović et al., 2016a) and it is concerned 

with the Continuous and objective measurement of the operators’ attention state, 

which still represents a major challenge in the ergonomics research. Studies in the 

HF/E regarding mental, cognitive and emotional functions are perceived through 

theoretical constructs and are still dependent on behavioral indicators (Farfowicz and 

Marek 2007), subjective questionnaires and measurements of operators’ overall 

performance (Parasaruman 2003). However, as mentioned in previous chapters, 

these methods are often unreliable (Lehto, and Landry 2012; Parasaruman and Rizzo 

2008; Parasaruman 2003; Simpson et al., 2005). Additionally, they are unable to 

provide a real-time and continuous performance and attention measurement at work 

places (Jagannath and Balasubramanian 2014), where the continuous focus is 

essential (Jung et al., 1997). On the other hand, wearable EEG provides the 

possibility of continuous and objective assessment of the attention level of the 

operators, which may provide a new paradigm in ergonomics research for human 

performance monitoring. In this way, unreliable user state evaluation based on 

theoretical constructs, which are mostly describing cognitive states of the workers 

related to the task execution, can be avoided (Fafrovicz and Marek 2007). 

Throughout the industrial history, studies of human performance in assembly 

tasks were mainly concerned with postures of the operators (Fish et al., 1997; Li and 

Haslegrave 1999; Rasmussen et al., 1994), which are still one of the main causes for 

work related musculoskeletal disorders (Leider et al., 2015). However, far less 

attention has been dedicated to the cognitive and perceptual factors that can cause 

errors in operating (Fish et al.1997). For example, the decrease in attention often 

precedes human error (Arthur et al., 1991; Kletz 2001; Reason 1990; Wiegmann and 

Shappell 2012; Wallace and Vodanovich 2003), and therefore, its timely detection 
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could help avoidance of dangerous situations including workers injuries, material 

damage and even accidents with casualties. 

EEG provides the possibility to both timely and objectively detect the critical 

behavior of humans (e.g. drops in attention, error, etc.) and it has been confirmed as 

a reliable tool in estimating ones' cognitive state (Klimesch et al., 1998; Luck, et al., 

2000; Murata et al., 2005; Yamada 1998). Analysis of the ERPs, extracted from 

continuous EEG recording, represents commonly employed method in evaluating 

ones’ neural activity (Hohnsbein et al., 1998). Another modality which can provide a 

continuous-like assessment of human attention level is a behavioural measure of the 

reaction times (RTs, [Larue et al., 2010; Sternberg 1969]). RT represents a time 

interval from the indicated start of operation (stimulation), until the moment of the 

action initiation and the main reason for wide usage of RT measurements is that they 

are easy to obtain and simple to interpret (Salthouse and Hedden 2002). However, 

the major drawback of experiments involving RT is that they usually consist of a 

stimulus followed by the response, without direct possibility to observe the mental 

processing that occurs between stimuli (Luck et al., 2000; Young and Stanton 2007). 

In this study the propagation of the P300 ERP component peak amplitude and 

latency was investigated in order to assess the operators’ level of attention, utilizing 

recently available mobile EEG equipment that did not alter the working process and 

enabled a ‘truly unobtrusive’ paradigm. In parallel, the propagation of behavioral 

component (RT) was examined. This study tested the hypothesis that the decreased 

level of attention, reflected in the reduced P300 amplitude, would also be followed by 

the longer duration of RT, as the operator would need more time to complete the 

operation, and vice versa. Further, the relationship between the RTs and P300 peak 

latency was examined, in order to investigate whether the RT duration would 

influence the latency of the P300 peak.  

8.2 Materials and Methods 

8.2.1 Participants 

Fourteen healthy subjects, all right-handed and white skin color males, of age 

between 19 and 21 years volunteered as participants in the study. Two participants 

were excluded from further analysis, due to abnormalities during the recording. 
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Participants had no past or present neurological or psychiatric conditions and were 

free of medication and psychoactive substances. They have agreed to participation 

and signed informed consent after reading the experiment summary. The Ethical 

committee of the Medical Faculty (University of Kragujevac) approved the study and 

procedures for the participants. 

8.2.2 Experimental Task 

Experimental Task was explained in detail in the Chapter 5, Section 5.3.1. 

8.2.3 Preparation and Experimental Procedure 

Experimental procedure was explained in detail in the Chapter 5, Section 5.3.2. An 

important notion here is that in this study, solely the Numbers task was used, for 

the aim of eliciting the P300 ERP component. 

8.2.4 Data Analysis 

The RTs were calculated as the difference between timestamps from the operation 

initiation and actual beginning of the crimping process. In other words, RTs are here 

regarded as the time elapsed between the stimulus presentation (step 1) and the 

moment when participant presses the pedal (step 6), as indicated in Figure 4-4 

(Chapter 4, Section 4.3.1). 

EEG analysis was performed offline using EEGLAB (Delorme and Makeig 2004) 

and MATLAB (Mathworks Inc., Natick, MA). EEG data were first bandpass filtered in 

the 1-35 Hz range. The EEG signals were then re-referenced to the average of Tp9 

and Tp10 electrodes. Further, an extended Infomax Independent Component 

Analysis (ICA) was used to semi-automatically attenuate contributions from eye blink 

and (sometimes) muscle artifacts (as explained in De Vos et al. [2011]; De Vos et al. 

[2010]; Viola et al. [2009]). ERP epochs were extracted from continuous EEG signal 

in the time range -200 to 800 ms with respect to timestamp values of stimuli. Baseline 

values were corrected by subtracting mean values for the period from -200 to 0ms 

from the stimuli. The identified electrode sites of interest for the ERP analysis in this 

study were Fz, Cz, CPz and Pz, as the P300 component is usually distributed and is 

most prominent over the central and parieto-central scalp locations (Picton 1992). 
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8.2.5 ERP Processing – P300 Amplitudes and Latencies 

In the ERP analysis, firstly the mean grand average (GA) values of the ERPs for the 

‘go’ and ‘no-go’ conditions were calculated. The GA methodology provides only the 

single value for the whole measurement period, thus the continuous evaluation of 

the ERP components was impossible. On the other hand, single trials ERPs could be 

used for the continuous evaluation of ERP components, but they would have low 

signal-to-noise (SNR) ratio. However, it has been reported that good quality ERPs 

could be obtained with as few as 11-repeated stimulus trials (Humphrey and Kramer 

1994; Prinzel et al., 2003). Therefore, in order to create a trade-off between reliability 

and temporal resolution we decided to employ a moving window on single trial ERPs 

elicited by ‘go’ condition, averaging the last 15 trials for selected electrodes. The usage 

of this one-trial-step overlapping window left the total of 435 averaged ERPs for 

further analysis.  

The P300 component obtained in this study was bifurcated containing two 

subcomponents, P3a and P3b. Whilst the P3a is more frontally distributed, the P3b 

is more prominent in the centro-parietal region (Polich, 2007). However, their latency 

vary depending on the stimulus events which elicit them, nature of task, population 

of participants included in the study, etc. In order to quantify and examine the 

propagation of P3a and P3b component amplitude and latency for 435 averaged 

ERPs, the following strategy was used: for the P3a and P3b sub-components, the 

latency of the maximum peak on the grand averaged ERPs for each subject was found 

and the 100ms interval window surrounding the peak was chosen for the calculation 

of the amplitude, utilizing mean peak amplitude method proposed by Luck (2014). 

Similarly, the latency value on each of the 435 averaged ERPs was calculated using 

peak latency measures (Luck, 2014). 

8.2.6 Comparison of ERP and RT 

Similarly, to the ERP analysis, the data for RTs were also averaged using a 15 trials 

moving-window, thus allowing examination of the RTs propagation during the task. 

This provided continuous-like time series of RTs, together with the P3a and P3b 

amplitude and latency values, further enabling the observation of common trends 

between these two modalities of attention monitoring. In this way it was possible to 

examine the correlation between the values of the P3a and P3b amplitudes and RTs. 
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8.2.7 Statistical Analysis 

In order to examine the difference of the GA ERPs between ‘go’ and ‘no-go’ condition, 

a paired t-test was performed. The ERPs used for ‘go/no-go’ comparison included all 

ERPs related to the ‘no-go’ condition and 50 ERPs related to ‘go’ stimuli preceding the 

‘no-go’ condition. To identify latencies with significant difference of go and no-go 

stimuli, mean amplitude values of GA ERPs across subjects were extracted over fixed 

20ms time windows. ‘Windows of interest’ were defined as follows: where successive 

bins achieved statistical significance, one after first, and one before last bin in this 

significant ‘run’ respectfully marked its beginning and ending. That is to say, times 

were treated as the windows of interest only if neighboring 20 ms bins were also 

significant (p < .05). After identification of these windows, mean amplitudes across 

the window were computed and further analysis was conducted. Due to multiple 

comparisons, Bonferoni corrections were applied where necessary and the reported 

pattern of data did not change.  

The correlation between the values of the RTs and P3a and P3b peak 

amplitudes and latencies, were statistically analyzed: vectors of P3a and P3b mean 

amplitude/latency values, calculated from the 435 values of the averaged 15 ERPs, 

and analogous values of the RTs were fed to the IBM SPSS software and Pearson 

correlation coefficients were extracted.  

8.3 Results 

8.3.1 EEG Results 

ERPs were successfully extracted confirming the validity of the setup and accurate 

synchronization of the stimuli-inferred marking of EEG stream. Figure 8-1 depicts 

GA ERPs for the go (full line) and no-go (dotted line) tasks for Fz, Cz, CPz and Pz 

electrode sites. The P3a and P3b values in the ‘go’ condition were significantly higher 

than in ‘no-go’ condition (p< .05), while the more prominent N2 component was 

elicited over ‘no-go’ trials (p< .05), as marked on the upper-left image of Figure 3. 

Further, the P300 peak elicited in our task was bifurcated, containing its both sub-

components (P3a and P3b), as shown on the upper-left image of Figure 8-1. 
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Figure 8-1: Grand average ERP waveform for ‘go’ (full line) and ‘no-go’ (dotted line) conditions 

across electrode sites under study. The N2, P3a and P3b ERP components are indicated on the 

upper left image. 

The P3a and P3b components were consistent throughout the trials, which is 

represented in the colour maps, on the upper trace of Figure 8-2 (a, c, d and f), that 

represents an example of data obtained from subject 11 (Table 8-1). The lower traces 

of Figure 8-2 (a, c, d and f) represent the average ERP waveform on the single subject 

level, which confirmed that our task paradigm was suitable for electing the P3a and 

P3b ERP waveforms for ‘go’ conditions in simulated workplace environment. 

Additionally, Figure 8-2b and 8-2e represent the topographic maps and the 

distribution of the P3a and P3b sub-components across the scalp locations. 
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Figure 8-2: The average ERP waveforms, from subject 11 (Table 1) and for 450 go trials (a, c, 

d, f – lower traces); P3a and P3b sub components of bifurcated P300 peak are indicated in the 

lower trace of image (a); the amplitudes were calculated for the window between the full lines 

for both P3a and P3b (as marked on images a, b, d, f). Further, the topography of P3a and P3b 

components are represented on images (b) and (e). 

In order to visualize the correlations between the RTs and P300 ERP 

component, the trials were sorted according to the RTs in ascending order. 

Corresponding ERPs were also rearranged according to the sorted RTs. These results 

are shown in Figure 8-3, where upper images represent results for a participant 

having the pronounced negative correlation (subject 11 from Table 3) and the lower 

images shows results for a subject with the positive correlation (subject 7, from Table 

8-1). Lower traces of the images (both, a and b) represent the average ERP waveforms. 

Color map represent 435 averaged ERP amplitudes across trials (the ERP data were 

additionally smoothed for the better visualization). In the upper trace of the left 

images, the averaged RTs are presented as the black line (its axis portrayed on the 

upper side). In these unsorted RTs the intra-individual RT variability across trials 

can be observed. Similarly, the intra-individual variability of the P300 component 

amplitude is presented in the color map of the left images of the Figure 8-3. The effect 

of correlation sign becomes visible after sorting the ERPs according to ascending RTs 
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(Figure 8-3, right upper traces of the images). It is visible that in case of negative 

correlation, P300 amplitude (especially P3b) increases as RT is decreasing (the arrow 

on the right shows the direction of increasing P300 amplitude values, and thus, the 

correlation "sign"). Analogously, for the subject that shows positive correlation this 

trend is opposite, also indicated for visualization purposes by a lower arrow on the 

right. 

 

Figure 8-3: Comparison of two subjects having negative (upper) and positive (lower image) 

correlation between P300 amplitude and RTs. Respective left sides show 

(averaged/smoothed) ERPs and RTs ordered as recorded during the measurements, while the 

right sides depict ERP and RT values sorted with respect to ascending RTs. Axes indicate the 

trial number as well as ERP latency, but also the value of RTs. Arrows on the right side 

indicate the direction of increasing P300b components (corresponding to correlation sign).  

Finally, the time series of the 435-averaged P3b components' mean amplitudes 

(upper panel of the Figure 8-4) and the corresponding averaged time series of the RTs 
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(lower panel of the Figure 8-4) are presented for the visualization of the effect of 

variation of the P3b ERP component and RTs. Vertical full lines indicate moments 

when P3b mean amplitude starts dropping, eventually reaching its lower peak 

(depicted with dashed lines). Red arrows on the top of the Figure 8-4 represent the 

direction of the decrease in P300 amplitude. It is notable that when the P3b amplitude 

is decreasing, opposite trend in RT can be observed. 

 

Figure 8-4: Visual representation of the time series of the 435-averaged P3b mean amplitude 

values (upper trace) versus 435-averaged RT values (lower trace). 

8.3.2 Errors of Commission 

There was only one participant who executed errors on the ‘no-go’ trials (six errors of 

commission, approximately 10% of all ‘no-go’ trials). Additionally, none of the 

participants committed errors of omission. Given that there were very few errors in 

total, we did not carried out further analysis regarding this matter. 

8.3.3 Go-No-go Comparison 

Paired sample t-test for the N2 ERP component at all four electrode sites revealed 

statistically significant difference between ‘go’ and ‘no-go’ trials (Fz: t(1,11)=3.42, 

p<.01; Cz: t(1,11)=3.26, p<.01; CPz: t(1,11)=3.40, p<.01; Pz: t(1,11)=3.31, p<.01). 

Similarly we observed statistically significant differences across ‘go/no-go’ trials at 

all four channels for P3a (Fz: t(1,11)=3.30, p<.01; Cz: t(1,11)=3.80, p<.01; CPz: 

t(1,11)=4.55, p<.001; Pz: t(1,11)=4.64, p<.001) as well as for P3b (Fz: t(1,11)=2.54, 
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p<.05; Cz: t(1,11)=3.40, p<.01; CPz: t(1,11)=6.11, p<.001; Pz: t(1,11)=8.72, p<.001) 

ERP components.   

8.3.4 Pearson’s Correlation Results 

In order to evaluate the correlation between ERPs and RTs the Pearson correlation 

was used. To further examine the strength of obtained correlation results the 

Bootstrapping and Fisher-Z transform methods was applied to the data, verifying the 

consistence of the obtained results. The results of correlation between the RTs and 

P3a and P3b mean amplitudes are presented in the Table 8-1.  These revealed that, 

on the group level, the correlation was negative on all electrode sites under study, 

with the high statistical significance (p< .001, Table 8-1).  

However, compared to the group level, the overall significance of Pearson 

correlation varied substantially between individual participants at all four sites and 

in both P3a and P3b ERP windows. The results were less variable in the P3b 

compared to P3a window (values of correlation are presented in lower part of Table 

8-1). Moreover, even in the P3b window, as obvious from the Table 8-1, only 4 out of 

12 participants followed the general trend of negative correlation between ERPs and 

RTs at all four sites. Another four participants had significant negative correlations 

at 3, 2 or only 1 electrode site. Finally, one participant even had positive correlation 

over all sites, while the remaining three participants had positive correlations at 2 or 

3 electrode-sites under study.  

Unlike the mean P3a and P3b amplitudes, the correlation between RTs and 

P3a and P3b latencies was inconsistent. Moreover, the distribution of latencies at all 

four sites of interest (Fz, Cz, CPz and Pz), across both P3a and P3b windows 

significantly differed from normal distribution. For that reason, the log instead of raw 

values was used, which approximated normal distribution somewhat better. At the 

group level, the P3b sub-component showed only two marginally significant negative 

correlations (at CPz and Pz electrode sites). On the other hand, P3a subcomponent 

latencies showed positive correlation at all electrode sites (p<0.05) at the group level. 

However, when analyzed for the individual subjects, the pattern of results was 

inconclusive. 
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Table 8-1: Pearson’s correlation values between the RTs and P3a and P3b mean amplitudes 

on the group level (upper part) and on the individual level (lower part of the table). 

 

Based on the results reported beforehand, two groups of participants were 

identified, i.e. five participants who showed negative correlation between RTs and P3b 

amplitude in one group, and four who showed positive correlation in the other. 

Regarding RTs, participants with negative correlation between RTs and P3b were 

faster (t(RT)=2.2, p<.05), with higher P3b amplitudes (t(Fz)=35.21,p<.001; 

t(Cz)=38.91,p<.001; t(CPz)=39.68,p<.001; t(Pz)=28.36,p<.001) and shorter P3b 

latencies (t(Fz)=36.31,p<.001; t(Cz)=30.74,p<.001; t(CPz)=30.43,p<.001; 

t(Pz)=34.61,p<.001). On the other hand, the positively correlated participants showed 

slower RTs, lower P3b amplitudes and longer latencies. 

Similarly, with regard to P3a component, two groups of participants (four in 

each) demonstrated the same pattern of results. Negatively correlated had higher 

amplitude (t(Fz)=22.2,p<.001; t(Cz)=26.5,p<.001; t(CPz)=27.14,p<.001; 

Pearson’s Correlation Values 

Component   P3a                      P3b 

Electrode site  Fz Cz CPz Pz  Fz Cz CPz Pz 

Group level  -.23 -.16 -.15 -.03  -.24 -.25 -.27 -.18 

Individual Subjects 

 P3a  P3b 

 Fz Cz CPz Pz  Fz Cz CPz Pz 

1  -.04 -.01 .03 .07  -.27 -.26 -.23 -.18 

2  -.16 -.13 -.05 -.05  -.14 -.18 -.19 -.20 

3  -.14 .01 .09 .09  .12 .23 .18 .08 

4  -.33 -.35 -.36 -.36  -.10 -.14 -.20 -.27 

5  -.03 .02 .02 .03  -.19 -.15 -.11 -.06 

6  -.05 -.03 -.03 -.02  -.15 -.10 -.07 -.04 

7  .22 .22 .16 .14  .15 .23 .22 .19 

8  -.18 -.07 -.03 -.01  -.18 -.07 -.05 -.08 

9  .03 .19 .13 .10  .17 .17 .02 -.05 

10  -.07 .13 .16 .16  -.01 -.14 .02 .06 

11  -.53 -.60 -.61 -.52  -.46 -.46 -.46 -.40 

12  .36 .44 .41 .36  .15 .12 .02 .19 

  - Negative correlations  (p<0.05)   

  - Positive Correlations   (p<0.05)   

  - Non significant values (p>0.05)    
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t(Pz)=16.84,p<.001) and shorter latencies (t(Fz)=18.77,p<.001; t(Cz)=11.05,p<.001; 

t(CPz)=7.51,p<.001; t(Pz)=9.89,p<.001), and vice versa for positively correlated. 

However, there were no significant group differences regarding RTs. 

8.4 Discussion 

The grand average comparison between ERPs extracted for ‘go’ and ‘no-go’ stimuli 

revealed that the higher P300 amplitude values are elicited for frequent ‘go’ condition. 

This finding was similar to the findings reported in previous study (Chapter 7). 

However, this is in contrast to most of the other findings, where participants were 

required to respond to deviant (infrequent) stimuli. Nevertheless, this manipulation 

(with responding to frequent stimuli) was necessary, given that the study was 

conducted in simulated working environment, whereby the continuity of operation is 

essential. Therefore, the lower amplitude value of the ‘no-go’ P300 component is not 

surprising (Figure 8-1), since the passive stimulus processing generally produces 

reduced P300 amplitudes, as non-task events engage attention resources to reduce 

the amplitude (Polich 2007). 

The Pearson’s correlation between the RTs and P3a and P3b amplitudes, on 

the group level at all four sites of interest, showed significant negative correlation 

(Table 8-1). This confirms the main hypothesis, proving that the higher P300 

amplitude values, which reflect the higher level of attention allocated to the task 

(Hohnsbein et al., 1998; Murata et al., 2005) correspond to the shorter RTs needed 

to complete the action. Additionally, higher values of negative correlation were 

obtained for the P3b, compared to P3a sub-component. However, the correlations 

between these modalities on the individual level were not consistent as within the 

group (Table 8-1), which constitutes one of the main finding of this study. This 

inconsistency could be attributed to the inter-individual differences, as the P300 

component is influenced with the various factors, e.g. intelligence, 

introversion/extraversion, etc. (Picton 1992), but there can be also individual 

differences that are not functional but anatomical, such as scull thickness 

(Hagemann et al., 2008). Furthermore, the RT variability is also known to be 

subjected to inter-individual differences (MacDonald et al., 2007). Therefore, this 

study supports the notion of Hockey et al. (2009), where the importance of studying 
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individual level data when performing psychophysiological measurements in 

ergonomics studies was emphasized. 

The Pearson’s correlations results between RT and P3b, identified two groups 

of participants: the one of which was negatively correlated and the other one positively 

correlated. Negatively correlated group was faster with higher P3b amplitudes and 

shorter P3b latencies, whereby the positively correlated group showed slower RTs, 

lower amplitudes and longer latencies. Similar pattern of the results was observed 

for the P3a component (except for the RT comparisons, which were not significant). 

Therefore, it may be concluded that participants who showed negative correlation 

between P3b component and RTs were more  focused on the task (given that they had 

higher P3b amplitude values) and were more efficient (given shorter RTs) than the 

positively correlated group. However, this finding should be examined in future 

studies and the consistency of the correlation results on individual basis needs to be 

confirmed through repeated measures on a single subject basis. 

Another interesting comparison would be between ERPs on ‘go’ trials preceding 

correctly withhold ‘no-go’ trials and on ‘go’ trials preceding commission error on ‘no-

go’ trials, as this could be an useful information on alerting the attention system 

(Robertson et al., 1997). However, the fact is that there was only one participant who 

executed actions on ‘no-go’ trials (6 errors in total, app. 10%). Interestingly enough, 

this was the participant (No.12, from Table 8-1) who showed a positive correlation 

between RTs and P3 amplitudes, in contrast to the generally observed trend (negative 

correlation between RTs and P3 amplitudes). It is noteworthy that it was hard to set 

an objective criterion as to what action to mark as an error, given that participants 

would sometimes demonstrate slight movements without executing the action. 

Therefore, the stricter criterion was chosen, based on which the errors of commission 

were defined as completion of the action on ‘no-go’ trials (including the pedal press). 

Although the P300 component is generally related to attention processing, the 

mechanisms that generate P3a and P3b subcomponents differ significantly. P3a 

component is more related to novelty preference, processing of exogenous aspects of 

stimuli, i.e. low-level attention processes (Daffner et al., 2000; Polich 2007). This 

component usually follows the N2 component, which was also found to be increased 

in response to novel or deviant stimuli processing (Daffner et al., 2000), as also shown 
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on Figure 8-3.On the other hand, P3b component was found to be more related to 

high-level attention processing, processing of endogenous aspects of stimuli, context-

updating information (working memory) and memory storage (Polich 2007). The P3b 

component is also related to decision processes (O’Connell et al., 2012), in which it 

mediates function between stimulus processing and required response (Verleger et 

al., 2005). This is in line with our findings, since the P3b was more prominent in 

response to go-stimuli, which required action, particularly in central and centro-

parietal sites.  

Further examination of continuous-like time series of the RTs and P3a and 

P3b amplitudes revealed visible trends of fluctuation of these two modalities over time 

(Figure 5). Existing literature suggests that both RTs (Flehming et al., 2007) and P300 

component (especially P3b, Polich et al. [2007]) are closely related to the attention, 

thus it can be inferred that fluctuation of these modalities correspond to the attention 

fluctuation on the neural as well as on the behavioral level. However, it is apparent 

from the results that not all the participants showed negative correlation between 

RTs and P3a and P3b components, which arises an obvious question: which data are 

more closely related to the attention and should ERP or RT measures be used for 

evaluation of the assembler attention? Bishu and Drury (1988) pointed out that in 

assembly tasks translational stage from input information into output action is more 

complex than in conventional RT tasks and therefore, the structure of the response 

may influence the performance. Moreover, in RT experiments there are many possible 

processes that contribute to the RT and therefore it is difficult to isolate and address 

specific feature of interest, such as attention (Salthouse and Hedden 2002). On the 

other hand, the P3b component is found to be the direct correlate of the higher-level 

attention processing (Verleger et al., 2005). Following this logic, we speculate that 

findings in this study demonstrate that ERP correlates of attention offer a more 

detailed and sophisticated understanding of the nature of attention decline compared 

to robust, but rough RT measures. Not only that the ERPs provide the precision of 

measurement (which is recognized as ‘reaction time of the 21st century’, Luck et al. 

[2000]), but also they provide possibility to gain more insightful understanding of the 

nature of the process as demonstrated through the analysis of P3a and P3b sub-

components. However, further studies are desirable to confirm the generality of this 

finding. 
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The analysis of the relationship between RTs and P3a and P3b peak latencies, 

revealed no statistically significant correlations between these components. Although 

Murata et al. (2005) proposed that the P300 peak latency corresponds to the stimulus 

evaluation time and that it can be also directly correlated to the level of attention, 

this was not observed in present study. This finding is consistent with the recent 

work of Ramchurn et al. (2014) and it confirms that only the P300 component 

amplitude variation, but not its latency, correlates with the variation of the RTs. The 

P300 amplitude, on the other hand, was recognized as an index of the attention 

allocated to the task in numerous studies (Murata et al., 2005; Polich 2007; De Vos 

et al., 2014 and Ramchurn et al., 2014). 

It was reported that the sudden drops in the attention, during a monotonous 

task, could be attributed to the e.g., daydreaming and mind wandering (Fisher, 1998). 

However, the neural correlates of these phenomena are still not fully understood 

(Hasenkamp et al., 2012). For instance, potential benefit of real-time attention 

monitoring, would be to provide the feedback to the operator once the attention level 

starts decreasing, thereby attempting to keep the attention level high and prevent 

possible human errors. The presented study indicates that “periods of attention 

oscillation” are sufficiently long to make such a feedback system meaningful. 

However, one of the limitations of the present study is that the results were obtained 

in an off-line analysis. Therefore, one of the directions of future studies will be 

utilization of one of the existing Brain Computer Interface (BCI) software packages 

for real-time data processing in the desired time window and to provide proper visual, 

auditory or mechanical (e.g. vibration) feedback. The process could be automated in 

sense that once the amplitude values of the P3b component start decreasing with an 

obvious trend, as indicated by red arrows on Fig 5. (e.g. between 180th and 200th 

averaged trial), the feedback could be provided. It is important to investigate the 

effects of such a feedback also in relation with its content, all the while taking care 

of workers privacy and mental well-being. 

Although, Mijovic et al (2016) believe that the measurement of covert attention-

related modality (P3b) offers better understanding of attention processes than the 

overt performance measure of RTs, one of the limitations of present study is that EEG 

is still uncomfortable for everyday use and on-site recordings in naturalistic 

industrial environments. The main reason for this is that the reliable EEG recordings 



 

 

118 

 

still depends on the wet gel-based electrodes (Mihajlović et al., 2015) and an ethical 

question of EEG recording arises, in sense that the supervisor could have information 

about the physiological signals obtained from employees, raising privacy concerns 

(Fairclough 2014). Nevertheless, if the positive/negative correlation between P3b 

component’s amplitude and RTs is holds on a single subject basis, then proposed 

methodology can be applied as that a primary (entry) test for workers. The benefits of 

such a testing can be twofold: firstly, the company management could be able to early 

detect whether the worker, for particular work position, is focused on the task (based 

on which group he belongs - positively/negatively correlated); secondly, the reliable, 

comfortable and low-cost attention-monitoring system could be created based solely 

on non-invasive RTs recordings. Thus, the future studies should be directed towards 

investigation of the reliability of correlation between P3b and RTs on single subject 

basis, upon which the proposed methodology could be applied in industrial settings. 

The presented methodology was applied on a manual assembly work, where a 

single functional modification of the real workplace was needed, in the sense of on-

screen stimulus presentation for the aim of eliciting the anticipated P300 ERP 

component. This modification was necessary, since the covert cognitive context is 

usually encrypted in complex brain dynamics and in naturalistic settings it is hard 

to isolate the specific cognitive processes, since they should firstly be evoked (Bulling 

and Zander, 2014). Therefore, at current stage this methodology cannot be directly 

applied for the on-site recording in realistic industrial settings and other workplaces, 

as we would have had to modify the work routine. For that reason, either a more 

general approach needs to be developed for further application to this work position, 

or another work position has to be identified, where such attention monitoring 

systems can be readily applied. These represent an additional direction for future 

research in this area. 

8.5 Conclusions 

This study extended existing psychophysiological approaches in ergonomics by 

providing novel methodology for workers’ continuous attention monitoring, during 

the course of a monotonous assembly task and in the realistic workplace 

environment. It was observed that, while on the group level  P3a and P3b attention 

related ERP component amplitudes, and the RTs correlated in the negative fashion, 
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that did not hold on individual subjects' level. This constitutes one of our major 

findings: overt performance measure of RTs alone are not reliable attention level 

measure per se, and covert physiological data needs to be employed for this task. 

Oscillating attention justifies the use of future feedback systems that would serve 

both to increase the attentiveness of workers and to prevent work-related errors. In 

that way, the potential accidents, which could lead to workers injuries and material 

damage, could be prevented, consequently increasing the workers overall well-being. 

Future studies are still needed to confirm the applicability of proposed methods, as 

well as to tune and sufficiently generalize them. 
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9. Communicating the User State: Towards Cognition 

Aware Computing in Industrial Settings 

9.1 Introduction 

This chapter is based on the work that is in preparation for submission, and explores 

the utilization of the wearable EEG and Kinect devices for the aim of the attention 

monitoring of operators, employed on monotonous repetitive assembly tasks.  

As discussed in Chapter 5 (Section 5.1), wearable sensors provide the 

possibility to move from conventional, explicit human-computer interaction (HCI), to 

more natural implicit HCI. In an implicit HCI context (Schmidt, 2000), the computer 

interprets human physiological and behavioral data as its input, enabling the 

development of cognition-aware computing for the user state monitoring. This is 

mainly attributed to a rapid development of sensing technology and improvement of 

algorithms that can interpret the acquired signals. Following that path, sensing 

technology is not only providing means for computers to obtain a better image of our 

environment (such as in smart cities, houses, vehicles etc.), but it also opens a new 

way of understanding humans, as the technology is deployed to monitoring our 

behaviors and states. In this context, cognition-aware computing was recently 

defined as the computing system that senses and adapts to cognitive aspects of 

personal context (Bulling and Zander, 2014). 

Despite the fact that manufacturing industry has aimed to reach “lights-out” 

manufacturing (i.e. fully automated factories, Tompkins et al., 2010) for decades, 

there are still many industrial processes relying on human operators. However, 

humans are often characterized as the most fallible element in the production line 

and due to limited mental and physical endurance that can sometimes cause 

behavior and responses to be unpredictable (Hamrol et al., 2011). Therefore, 

introduction of cognition-aware computing in industrial settings could be beneficial 

and these effects of deviation in operators’ cognitive state could be lessen.  

Although industry has conceived the usage of wearables for over a decade now 

(Stanford, 2002), the majority of their applications are still oriented towards physical 

activity recognition (Stiefmeier et al., 2008), rather than activity recognition for the 



 

 

121 

 

mind (Kunze et al., 2013). In order to get closer to applicability of cognition-aware 

computing (Bulling and Zander, 2014) in workplaces, this study propose a system 

that is capable of synchronous recording and analysis of brain dynamics and active 

behavior in replicated industrial environments. 

As discussed in Chapter 3, currently the only available technologies for 

investigating the brain dynamics in naturalistic environments are fNIRS and EEG 

(Gramann et al., 2014). Although fNIRS is still less obtrusive than EEG, it is an 

indirect metabolic indicator of brain dynamics and it suffers from low temporal 

resolution (Gramann et al., 2014). On the other hand, the EEG provides the direct 

measure of the neural activity and it possess high temporal resolution (Gramann et 

al., 2014). As EEG recently became wearable, it currently represents the most 

powerful tool for investigation of brain dynamics in naturalistic environments. The 

EEG has been successfully applied in BCI, which has already moved from assistive 

care to other everyday applications (Van Erp et al., 2012). BCI appears to be 

increasingly accepted for everyday use, since various companies have started 

developing consumer based EEG devices for e.g. gaming purposes (Van Erp et al., 

2012). Exploring additional applications of BCI, a novel direction of so-called passive 

BCI has emerged (Zander and Kothe, 2011). Passive BCI is oriented towards 

continuous analysis of the recorded brain signals in human-machine interaction, 

with the aim of objectively assessing user states. A clear momentum of passive BCI 

technology recently enabled new additions to application in industry, empowering the 

research area of neuroergonomics (Parasuraman, 2003). The only obstacle in 

wearable EEG recording is that reliable EEG measurements could still be made solely 

with wet electrodes (Mihajlović et al., 2015), which is still uncomfortable for the 

workers. However, as discussed in previous chapters, it provides the possibility to 

investigate the brain dynamics in faithfully replicated workplaces and the findings 

from these kinds of experiments can be translated to the industry, once the EEG 

becomes fully comfortable. 

Another major challenge in ergonomics and HCI research is the investigation 

of movements and postures of workers in real time. For that aim, internal 

measurement units (IMUs) and MoCap sensors can be used, as they have already 

achieved a degree of success. However, the majority of IMUs and MoCap Systems use 

external sensors (e.g. Depth of Field targets), which are attached to the person being 
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recorded (discussed more in detail in Chapter 3). Even though workers reported no 

issues wearing the IMUs sensor network during work (Stiefmeier, 2008), the precise 

monitoring using contactless sensors would bring an additional comfort. As an 

emerging alternative, the gaming industry opened a new path in affordable multi-

sensor technology, which is capable of precise motion capturing without the need for 

wearable sensors, in the form of e.g.  Microsoft Kinect. Apart from its primary use, 

researchers extended its applications in the ergonomics domain, since it provides the 

possibility to effectively observe the workers’ movements and postures in real-time 

and in real-world environments. 

The majority of research related to operators’ motion is related to posture 

estimation or action recognition (e.g. Stiefmeier et al., 2008) , whereas much less 

attention has been dedicated to linkage of cognitive processes to motor actions. An 

important notion is that the cognition is closely related to motor actions in 

naturalistic and dynamics environments (Parasuraman and Rizzo, 2008). For 

example, a recent study reported that variability in quantity of movements, which are 

not directly related to the task, could be an important indicator of the user state (Roge 

et al., 2001). This study investigated behavioral activity off-line and indirectly, since 

the participants were recorded with the RGB (Red Green Blue) camera and manual 

analysis was subsequently performed, which consisted of counting the number of 

identified activity types (Roge et al., 2001). However, advances in HCI and computer 

vision technology allow on-line and automated processing of these. Sensors that rely 

on structured light technology in unison with additional sensors opens the possibility 

of automatic acquisition of information on behavioral activities, as it can directly 

record the position of human body key points (joints) in time. This enabled the 

development and usage of a simple behavioral model, based on movement energy 

(ME). Ultimately, the combination of brain dynamics and behavioral modalities can 

open a deeper understanding of human mental states during complex work activities 

(Gramann et al., 2014).  

In order to investigate above described concept, the specific workplace was 

replicated from our industrial partner and enhanced it with a sensor network, thus 

creating the sensitive workplace (As described in Chapter 5, Section 5.5). The next 

step was synchronous and in real-time recorded the EEG and behavioral signals and 

investigated the correlation between these modalities. The goal is to achieve a system 
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that will be able to perform online detection of deviations in user states. Such a 

system should be able to detect a drop in mental and physical performance so that 

appropriate action (e.g. a break or a change in task) can be taken. Ultimately, such a 

system could prevent the occurrence of operating errors and improve the worker 

experience. 

9.2 Methods 

9.2.1 Participants 

Twenty male subjects (aged between 19 and 21), without industrial working 

experience, participated in the study. The study was restricted to male participants 

both to exclude possible inter-gender differences and to replicate the selected job task 

more faithfully, since in company that supported our research only males occupy the 

specific workplace under study. Participants did not report any past or present 

neurological or psychiatric conditions and were free of medication and psychoactive 

substances. They were instructed not to take any alcoholic drinks prior to, nor on the 

day of participation in the study. All participants had normal or corrected-to-normal 

vision. They agreed to participate in the study and signed informed consent after 

reading the experiment summary in accordance with the Declaration of Helsinki. The 

Ethical Committee of the University of Kragujevac approved the study and procedures 

for the participants. 

9.2.2 Experimental Setup 

Experimental setup was explained in detail in Chapter 5, Section 5.2 

9.2.3 Experimental Procedure 

Each of the participants arrived in the laboratory at 9:00 a.m. Upon carefully reading 

the experiment summary and signing the informed consent for participation in the 

study, participants started the 15-minute training session in order to get familiar 

with the task. Finally, EEG cap and amplifier were mounted on the participants’ head 

and the recording started around 9:30 a.m. Participants were seated in the 

comfortable chair in front of the improvised machine. In this study, both, the 

Numbers and the Arrows paradigm (explained in the Chapter 5, Section 5.3.2) were 

used in balanced order and participants had a 15-minutes break between the tasks. 
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Each task was presented on the 24” screen from a distance of approximately 100 cm. 

The screen was height adjustable and the center of the screen was set to be in level 

with participants’ eyes.  

9.2.4 ERP Processing 

EEG signal processing was performed offline using EEGLAB (Delorme and Makeig, 

2004) and MATLAB (Mathworks Inc., Natick, MA). EEG data were first bandpass 

filtered in the 1-35 Hz range, following which the signals were re-referenced to the 

average of the mastoid channels (Tp9 and Tp10). Further, an extended infomax 

Independent Component Analysis (ICA) was used to semi-automatically attenuate 

contributions from eye blink and (sometimes) muscle artifacts (as explained in Viola 

et al., 2009; De Vos et al., 2010; De Vos et al., 2011). After this data preprocessing, 

ERP epochs were extracted from -200 to 800 ms with respect to timestamp values of 

‘go’ and ‘no-go’ stimuli indicated by the SNAP software. Baseline values were 

corrected by subtracting mean values for the period from -200 to 0 ms from the 

stimuli. The identified electrode sites of interest for the ERP analysis in this study 

were Fz, Cz, CPz and Pz, as the P300 component is usually distributed and is most 

prominent over the central and parieto-central scalp locations (Picton, 1992). 

Similarly to study presented in Chapter 7, a one-step moving window was employed 

on single trials ERPs elicited by go condition, by averaging the last 15 trials for 

selected electrodes. Finally, the P300 amplitude was calculated for averaged ERPS 

and for ‘go’ conditions, using mean amplitude measure (Luck, 2014) in the time 

window from 230 to 450 ms, with regard to the time stamps of the stimuli. 

9.2.5 Engagement Index (EI) Calculation 

EI is a measurement of a person’s cognitive engagement in a task, reflecting their 

level of alertness (as mentioned in Chapter 2, Section 2.3.4). The EI represents the 

ratio between the high frequency waves (β), and the summation of the low frequency 

waves (α+θ), i.e. EI = β/(α+θ). Higher EI indicates the higher engagement of the person 

in the task, while the low values of EI indicate that person is not actively engaged 

with some aspect of the environment during the task (Prinzel et al., 2000). 

In order to obtain the EI values, the raw EEG signal was bandpass filtered in three 

frequency bands (θ, α and β), following which the signals were re-referenced and the 
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artifacts were removed using ICA. The EEG signal was then segmented according to 

the timestamps of the stimuli appearance and the signal segments of 1s preceding 

the stimulus appearance were used for further analysis.  Further, the Fast Fourier 

Transform (FFT) was applied to the signals and the Power Spectral Densities (PSDs) 

were calculated for each frequency band and each simulated operation. Finally, this 

allowed us to calculate the EI as seen in Figure 9-1. 

9.2.6 Movement Energy (ME) Calculation 

In order to investigate whether the task unrelated movements could be quantified 

automatically, we recorded the upper body movements of the participants with the 

Kinect. As a first step towards this goal, a correlation between task-unrelated ME and 

the level of attention, with the reference to the EEG attention-related modalities of 

P300 amplitude and EI was investigated.  

In experimental setting, the 10 key-points seated model was used, as the replicated 

machine occluded the lower-body part of the participants (Figure 9-1). Further, the 

methodology for automatic quantification of the task unrelated ME was applied, 

which was based on movement of the key-points and the simple equation of the 

kinetic energy adopted from classical mechanics. The motion data were extracted and 

analyzed in the period between the operators’ completion of each operation and the 

consecutive stimuli that was presented to the participants. In that period, during 

conductance of the step 8 from Figure 5-4 (Chapter 5), the participants had no 

prescribed activity and the expectation was that they would spend that time relatively 

still. Further, the kinetic energy of movement was calculated for each simulated 

operation and for each of the key-points in all-three axes. Finally, the ME for each 

trial was calculated as the summation of kinetic energies in all three axes (Figure 3c).  

9.2.7 Reaction Time Calculation 

As stated in previous section (8.1), it is considered that shorter RTs indicates higher 

attentive state and vice versa, except in case of speed-accuracy trade-off. In this 

study, the RTs were calculated for each simulated operation, as a time elapsed 

between stimulus presentation and the beginning of the simulated machine crimping 

action, i.e. as the time elapsed between step 1 and step 6 from Figure 4-4. 
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9.2.8 Data Averaging 

With the aim of investigating the correlation between obtained modalities, the same 

approach for averaging (using one-step moving window) was applied to the ME, RTs 

and EI signal modalities, prior to the statistical analysis. Figure 8-1 graphically 

depicts the algorithms that were used for the data analysis in this study. 

9.2.9 Statistical Analysis 

An off-line data analysis was conducted in order to investigate the relationship 

between EEG and behavioral signal modalities. Upon data averaging, the matrices of 

435 data points for each participant and task were fed into IBM SPSS and the data 

were aggregated according to the number of trials. First, a Spearman’s correlation 

was performed, mainly to investigate whether the any of the recorded modalities 

reflected the decline in user state over the trials (as an approximation of time). 

Further, Pearson’s correlation was carried out, with the aim of investigating whether 

behavioral modalities correlate with the EEG derived modalities and to determine 

whether ME could be used as a reliable modality for estimation of user state.  

 

Figure 9-1:Graphical representation of the alghorithms used during the signal processing for 

each signal modality. 
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9.3 Results and Discussion 

Regarding the Spearman correlation it was found that, regardless of the task order, 

the monotonous task (Numbers task) induces an attention and engagement decline, 

as reflected by the decline of the P300 amplitude and EI. Additionally, ME increases 

as the tasks progress (Figure 8-2 in the upper left table). On the other hand, results 

in the more mentally demanding task (Arrows task) depended on the order in which 

it was presented to the participants. This is especially notable through evaluation of 

the P300 amplitude, as it increased during the task if the Arrows followed the SART 

task. Although the EI still decreased, proving that mental engagement of the 

participants decreased during the task, the evaluation of the P300 amplitude revealed 

that the participants were able to maintain higher attention state during the task. 

This is also notable through evaluation of ME, as only in the case where the Arrows 

was the second task, the ME decreased with time elapsed, i.e. the participants made 

less task unrelated movements. It is noteworthy that RTs were independent from both 

task type and task order and it decreased with the time-on-task, probably caused by 

the effect of rehearsing as the task progressed. 

The bottom part of Figure 8-2 depicts the Pearson’s correlation results. It is notable 

that the expected negative correlation between P300 amplitudes and ME is more 

distinct in the case of low demand, monotonous task (SART), than in the more 

mentally demanding (Arrow) task. This finding is not surprising, as in the existing 

literature the quantity of movements that are not related to the task are reported to 

be linked to attention decline in monotonous tasks (Roge et al, 2001). Further, when 

the more monotonous task is presented first, the EI was negatively correlated for each 

key-point, while in the more demanding task almost no correlations were found 

between EEG and behavioral signal modalities. Finally, if the Arrows were presented 

as the first task, the only negative correlation with the P300 amplitude was at the LP, 

LW, RP and RW key-points, while the EI was positively correlated with the ME on 

almost all key-points. This could be explained through the notion of re-activation, as 

participants in the more mentally demanding task use task unrelated movements in 

order to re-activate the attention related resources in the brain (Roge et al., 2001), 

thus staying more focused on the task. This was not obvious if the SART task followed 

the Arrow task. In fact, again in the more monotonous task, the P300 amplitude was 
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negatively correlated with the ME on the majority of key-points. From all these 

results, it can be infer that during low demand, monotonous tasks the ME that is 

unrelated to the task is negatively correlated with the attention level.  

The presented results supported the intention of assessing the user state by 

synchronously recording and analyzing behavior and EEG modalities, with a 

relatively simple and low-cost unobtrusive sensor network. However, an obvious 

limitation is that all the analysis was done post hoc, and for that reason the future 

studies will be concerned with the on-line data analysis. The future steps will include 

the development of advanced algorithms for automated, real-time acquisition and 

analysis of presented modalities, which could further be implement in an industrial 

environment. Such a system could ultimately lead to increase of workers’ alertness 

and task engagement, consequently leading to the improvement of workers overall 

well-being. 

9.4 Conclusion 

Monotonous and repetitive tasks, commonly seen in manual assembly production 

lines, often lead to mental strain, due to limited mental and physical endurance of 

humans. This work focused on exploiting advances in EEG and behavioral sensing 

technology in order to detect users’ states that indicate the occurrence of attention 

and engagement decline. The final goal is to prevent errors that might lead to product 

waste or injuries caused by deviations in user state.    

This study demonstrated that EEG and behavioral markers can provide a more 

detailed insight into user state. This was achieved in a realistic workplace 

environment and represents a first step towards the described HCI model paradigm. 

ME, which can be analyzed in real time, is less obtrusive than EEG and may provide 

a reliable, stand-alone tool for attention monitoring, especially in industrial 

scenarios.  An obvious follow-up is to provide real-time processing of these features 

and put them in a feedback loop with an indication communicated to workers. In this 

way, operators could be informed about their cognitive state in a close-to real-time 

manner, which could serve to prevent errors and dangerous consequences. This 

could then become basis of a true future cognition-aware computing in the industrial 

environments.  
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Figure 9-2: Results retrieved from experimental study. Upper left table – Spearman’s 

correlations of elapsed task time with physiological and behavioral factors; Bottom table – 

Pearson’s correlations between behavioral and physiological factors; significance is treated at 

a p<0.05 level. Fz, Cz, CPz and Pz represent the electrode sites from which we calculated 

P300 amplitudes and EI. The rows in the lower table represents the key point locations 

derived from Kinect, explained on Figure 3. The last rows represent the response times (RTs). 
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10. General Conclusions 

Present dissertation investigated the possibility of objective assessment of the 

operator’s cognitive state in the naturalistic workplace environment. For that aim, 

faithfully replicated workplace was created, where participants in the study 

performed the simulated assembly operations. The framework for synchronous 

multimodal physiological and motion signals acquisition and processing was 

presented and the benefits of instating such a system for both manual assembly task 

design and for the real-time user-state monitoring were discussed. Although the 

multimodal framework was proposed, for the aim of this dissertation, the results from 

the EEG, RTs and Kinect were presented, while investigating the relationship between 

these and HR and GSR signal modalities will be the subject of the future studies. 

In the first experimental study, the potential benefits of inclusion of frequent 

micro-breaks on the attention level was investigated. In order to investigate the 

influence of the micro-breaks on the attention level of the participants, the P300 

component’s amplitude was calculated for the period prior to, and following the 

micro-break period. It was found that the micro-breaks enhance the attention level 

of the operators, as the magnitude of the P3b component were significantly higher 

following the micro-break period than preceding it. This finding can be used for the 

manual assembly operations task design, in a way that the workers’ should receive 

frequent short breaks during their shift. However, it is important to note that in the 

presented study, only one time-window was used and therefore, the future studies 

should investigate what duration of the micro-breaks would be the most desirable, 

taking into account the productivity and the well-being of the workers. 

Second experimental study investigated whether the hand alteration 

influences the attention of the workers’. In order to investigate this hypothesis, the 

participants were subjected to two distinct psychological tests that were presented to 

the participants in the balanced order, and simultaneously with the simulated 

assembly operations. In the first experimental paradigm, the participants could 

initiate the assembly operation with whichever hand they prefer, while in the second 

they were conditioned with which hand to initiate the assembly operation. The 

findings indicated that the participants in the study had significantly higher attention 

level in the case when they were imposed to the hand alteration condition. The 
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attention was assessed through the P300 component’s amplitude and RTs. Although, 

the P300 amplitude was significantly higher in magnitude in hand altering condition, 

there was no difference in RTs between conditions. This finding supports one of the 

main premises of the neuroergonomics, where it is sated that the overt performance 

based measurements (such as RTs) are unreliable and that ergonomics should be 

directed towards investigation of the covert cognitive processes. Another interesting 

finding was that, in the case where hand-altering task was followed by the less 

demanding task, the P300 component’s amplitude magnitude significantly dropped, 

i.e. the participants had significantly lower attention level.  This finding can also be 

utilized for the job rotation strategy, in a way that less demanding task should not 

follow the more demanding task, as the worker’s in this case face decrement in the 

attention. However, this finding should be further investigated in the future studies. 

Finally, the possibility for utilization of the EEG and behavioral signal 

modalities, with the aim of real-time assessment of the user cognitive state, was 

investigated. Regarding the brain dynamics, both the P300 component’s amplitude 

and the EI were investigated and their propagation over time was assessed. 

Simultaneously, the RTs and the proposed concept of the ME were also calculated 

and their correlation with the brain dynamics was calculated. Although the research 

was conducted in an off-line analysis, the findings from these studies suggested that 

the proposed multimodal system can be successfully applied for the timely 

assessment of the workers’ cognitive state. Generally, it was found that the EEG 

modalities are related in negative fashion to the behavioral data, i.e. the participants 

in the study were slower in executing the action when in the brain signals showed 

lower attention (assessed through P300 component’s amplitude). Moreover, the 

amount of task unrelated movements was higher; when the brain derived attention-

related modalities showed the decreased level of attention. Future studies should be 

concerned with the development of the algorithms for the on-line acquisition and 

analysis of the EEG and behavioral data, by utilization of one of the recent BCI 

software packages. This should lead to possibility of timely detection of the deviation 

in workers’ cognitive states, which could ultimately lead to safer production 

environments. 

Experimental studies, presented in the dissertation, were concerned with 

investigating the relationship between EEG and behavioural modalities. Since the 
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multimodal system that was proposed includes also HRV and GSR measurements, 

an obvious follow up studies should be directed towards investigating the interaction 

between all these modalities. For example, it was reported that the HRV increases 

with lowering the alertness of humans. Similarly, it was reported that increased SCR 

and SCL reflects higher attentiveness. For that reason, the relationship between HRV, 

SCL, SCR, P300 ERP component (and/or EI) and behavioural modalities should be 

investigated, with the aim of increasing the precision of the user state estimation in 

the workplaces. Ultimately, once the relationship between all mentioned modalities 

is investigated, the usefulness of the proposed system can be fully evaluated. 

The work presented in this dissertation outlined the vulnerability of the 

existing ergonomics methods for the assessment of the cognitive states of the 

workers, and proposed that the cognitive states should be assessed by utilizing the 

neuroergonomics methods. Not only that neuroergonomics provide the possibility of 

objective quantification of the human cognitive states, but it also provide the 

possibilities for the real-time assessment of it. The recent development in sensing 

technology aided in emergence of the wearable physiological sensors, which can 

nowadays be used for the recordings in the naturalistic environments. The 

physiological sensor that was of the most importance for the neuroergonomics 

studies was the development of wearable EEG. Therefore, it is nowadays possible to 

directly observe the brain dynamics in applied environments. On the other hand, the 

MoCap technology also advanced, which can be observed through recently available 

sensors that are based on the structured light technology, but which are also 

inexpensive. This dissertation presented the overall framework for utilization of the 

wearable sensors and the MoCap, with the aim of the real-time user state monitoring. 

The presented system can be foundation for the future implicit HCI system that can 

be employed for the cognition-aware computing in industry, which can ultimately 

lead to decrease of human errors in industry, which are caused by the attention 

decline, consequently increasing the overall workers’ well-being.  
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