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“The scientific man does not aim at
an immediate result. He does not
expect that his advanced ideas will
be readily taken up. His work is like
that of the planter - for the future.
His duty is to lay the foundation for
those who are to come, and point
the way.”

Nikola Tesla



IIPEATI'OBOP

[IpBEHCTBEHO KEAUM MOa ce 3axXBaAuM Mojoj BepeHunu JeaeHu llBetuh 3a myHy
IIOAPIIKY TOKOM NOKTOPCKHUX CTyauja. JeaeHa je joIll jemHOM HeceOMYHO IoapzKasa
MOj€ OJACYCTBO TOKOM CTyAHpama, ILITO j& PEe3yATHPaA0 H3PaAOM HJOKTOPCKE

aucepTaliyje, 3a IITa caM joj HEM3MEPHO 3axXBaAaH.

XKeaeo O6ux ma m3pas3muM CBOjy 3axBasHOCT EBpomnckoj Komucuju u pomaiuju Marie
Curie 3a (PUHAHCHjCKY NOAPIIKY TOKOM H3pazie MOKTOPCKE AUcepTanyje, Koja je
peaansoBaHa Kpo3 npojekat “Innovation Through Human Factors in Risk analysis and

management”, InnHF- FP7-PEOPLE-201 1-ITN-289837.

[TocebHO caMm 3axBasaH MOM MeHTOpPY Hpodecopy HMBany Mauyxkwmhy 3a mpenanHo
MEHTOPCTBO Kpo3 cBe (pase MOKTOPCKHX cryauja. Takobe, mpodecop Mauyxkuh ce
CHa’KHO 3aAarao 3a IOKpeTamhe HAyYHHX UCTPasKHUBama U3 HOBE HAYYHE MUCITUIIANHE
Ha KaTeIpH 3a IIPOU3BOMHO HMHIKEHEPCTBO. TaKBO 3asarare U HeroBa IIOAPIIKA Cy
Ouae o HeM3MEPHOT 3HAuaja, a HAPOYHUTO V PaHUM [AaHHUMa OOKTOPCKUX CTyAHja,
KaJa Cy MHOTH CYME-aAHl Y MOTYRHOCT CIIpoBohema HeypOoeproHOMCKHX HCTPasKHUBamba
Ha KaTeApH 3a MIPOU3BOAHO HHKEHepcTBO. IIpodecop Mauyxxkmhy MH je mpyzKHO
moMoh M TOKOM ITOCTaBKe eKCIlepuMeHaTa, Kao U y IIOCTYIIKy HabaBKe oIIpeMe Koja ce
KOPHUCTHAA V €KCIEepPUMEHTAaAHHUM HCTPaKUBamUMa ¢ IIPHUAUKOM ajarTtalyje
AabopaTopije 3a HeypoeproHOMCKAa HCTPAaKMUBAaIha, IITO je Ha IIOCAETKY PE3YATHPAAO
o0jaBpUBameM HAy4YHHX pafgoBa, Ha YeMy caM My H3y3eTHO 3axBaaaH. [lopen
npocpecopa Mauyzxuha, npodecop Bpanncaas Jepemuh je 3acAayzkaH 3a IIOKPETAIHE
UCTpazKuBarma y Hay4dHO] AUCLUNAWHH HeypoeproHomuje. [Ipodecop Jepemuh je
Takobhe 6mo meHauep InnHF mipojekTa Ha YHUBEP3UTETY Y KparyjeBIily U caMUM THM je
IIOMOTa0 aaIITHPae AadopaTopHje 3a HEYPOEeProOHOMCKA UCTpaKuBawa. [lopes Tora,
npocpecop Jepemmh je, Kpo3 mpyzKame KPUTHYKOL IIOTA€[A Yy IMIPOLECy H3paie
eKCIIepUMeHaTa aAu U IIPUAMKOM ITHCama HAYYHUX pagoBa Y BEAUKOj MEPH IIOMOTao
BUXOBY u3pany. M3y3etTHo cam 3axBasaH u npodecopy Ilerpy TomopoBuhy Ha momohn
KOjy MU je IIPYKHO0 IIPU 00pagu CUTHaAa KOjU Cy JOOHjeHH TOKOM €KCIIe PUMEHTAAHHUX
HCTpakKUBamka, Ka0 ¥ TOKOM IIOCTaBKE E€KCIIepPHMEHTa, a Hapo4duTo 3a u3pany GSR
ypebaja u HR monitor-a (Koju cy pa3BHjeHU Y okBUpYy InnHF npojekra, y3 nomoh Care

CaaBHwuha).



HeusmepHy 3axBaAHOCT AyTYjeM MOM “He3BaHUYHOM MeHTOpPYy , Ipodecopku Bamu
KoBuh (Puao3odcku pakyaTer, KaTeapa 3a IICUXOAOTH]Y, YHUBep3uTeT y Beorpany)
3a IeHY H3y3eTHY MOAPIIKY TOKOM HCTpazkupBamba. 2Keaeo OMX ma mMcTakHeM na 6e3
E-E€HOT 3Hama 13 00AaCTU eKCIIepUMEHTaAHe IICUXOAOTHje U3pajja OBe AucepTalije He
6u 6uaa moryha. Takobe, npodecopka KoBuh je yuecTBoBasa y cBUM dazama uspaze
OBe [aucepranyje, yKby4dyjyhM IIOoCTaBKy eKCIlepuMeHaTa, Kao M y aHaAu3u U
HHTepIpeTanyju nobujenux pesyarara. [lopen Tora, nmpogecopka Kosuh je HecebuyuHO
IIOCBETHAA CBOje BpeMe TOKOM CBHUX (paza IpHUIIpeMe Hay4YHUX panoBa, YKEY4yjyhu

IIHcame, Kao U OATr0OBOPE PELIEH3EHTHUMA, 3a IITa CaM HEHU3MEPHO 3aXBaAaH.

HBany 'auropujeBuhy 61X 3keA€0 A Ce 3aXBAAUM IIITO CE IIPUK/BYYIHO THUMY Y IIPOjEKTY
Kao HCKyCHH wuctpaxkuBad (Experienced Researcher). ViBaH je 6uo crpemaH na
HeceOHYHO ITOIEAU CBOje 3Hambe U3 00AacTH obpase OMOMEIUIIMHCKHUX CUTHAAA IIITO je
IIPEeCTaBbhAAO jelaH O KBYYHHX MOIPHHOCA U3paau oBe aucepranuje.. Takobe,
WBan Mm je mnomarao Kpo3 cBe dasze HCTpaKuBama, YKbYy4YyjyhH I[IOCTaBKY
E€KCIIEpUMEHTa, yBobeme y obaacT obpaze cHUrHasa, aHAAM3y W HHTEpPIpeTarujy
nonataka. [lopen Tora, MiBaH je onBojuo cBoje BpeMe na 0yzie CaMHOM y AabopaTopUju
TOKOM Beher meaa ekcriepuMeHTaAHUX UCTpakuBawma. Ha Kpajy, y3 BanoBy nomoh
caM CTeKao HCKyCTBO y ITHCAlky HCTPaKUBAYKHX 4YAaHAKa, C OO3HMpPOM Oa je OH
aKTHUBHO YYE€CTBOBAao y IIHCAy MOT IPBOT pafa 3a HAYYHH YaCOITHMC aAH M OCTaAHX

ypaHaKa Koju cy objaBmbeHM TOKOM InnHF mpojekTa.

Takobe, 3keaeo OUX ma ogam IpuU3Hame U npodecopy Maarten De Vos-y (ca karempe
3a OMOMEIUIIMHCKH HHXKEHEePUHT, YHUBep3UTeT y OKcdopay), KOjH je Kpo3 KPUTHUIKE
KOMeHTape Ha paj Koju je 00aBbeH y Hallloj aAabopaTopHju AonpHHeo yHamnpebemy
KBaAuTeTa caMmor pana. HeusmepHo cam 3axBasaH u Ipodecopuma Mmuaoiry
MuaoBanosuhy u MupocaaBy MunoBuhy (AabopaTtopuja 3a MyATHMeaAMjasHe
KoMyHUKalyje, PakyareT opraHmu3zallMOHUX HayKa, YHUBep3uteT y bBeorpany) 3a
BHUXOBY capaimy ToKoM InnHF mnpojekTa, Kao U TOKOM ITpUIIpeMe KOH(EPEHIIH]jCKOT
pana Ha TeMy MyATHMOJAAHE UMIIAMIIMTHE MHTepakKIifje u3Mehy 4oBeKa U padyHapa.
Taxkobe npodecopu MuasoBanoBuh u MUHOBHN Cy y4eCTBOBaAU y Pa3BOjy allAHKAIIHje
KOja ce KOPHCTHAA 3a CHUMame IIoKpeTa Teaa (momohy Kinect-a), kao u codprBepa 3a

CHHMambe IIOKpeTa I1aka (CHUMbeHUX nnomohy Leap Motion-a).

Jo1lI jemaH BEAWKH JOIIPUHOC CaMOj U3paay JUCepTallHje je mpyzKuo Moj 6pat Bormaun
MujoBuh, Koju Me je Ha IIOYETKYy OOKTOPCKUX CTYAHja yBeo y obaact obpame EET

curHara. Takobe, Borman mMu je momarao TOKOM o0pazae pe3yATaTa OOOHjeHUX U3



E€KCIIEPUMEHTAAHUX HCTpaxKuBamka, Kao nu IIPUAUKOM AaBama oAroBoOpa

peleH3eHTHMa, HaKo HUje 610 Mehy moTnucaHmum ayTopuMa objaBbeHUX pagoBa.

CaaBunu [JamjaHoBuh caM BeoMa 3axBasaH Ha IIoMOhM KOjy MU je HIpyzKHaa ca
aIMUHUCTPAIIMjOM TOKOM IIEAOT IIEpHofa CTyAupama U Tpajarba InnHF mnpojekTa.
CaaBuIia je 6raa BeoMa rocBeheHa pelraBamy pa3HUX CHTyalllja Koje Cy ce HaMeTaAe
TOKOM Tpajama IIpojeKTa, Kao M y KOMYHHKAllHjU ca YHHBEP3UTETOM, ILITO j€
PE3YATHPAAO pelllaBalky CBHUX IIpobaeMa Koju cy HacTajaau. Takobe, keaeo 6ux na ce
3aXBaAUM KOAeTaMa M3 LIEHTpPa 3a TePOTEXHOAOTHjy: Muaany PamenkoBuhy, Mapky
Danany, Mapky MuaomeBuhy, Evanthia-ju Giagloglou, Christos-y Tsiafis-y u Alberto
Petruni-jy; 3a BUXOBY IOAPUIKY yV TEUIKUM TPEHyILINMAa, Kao 1 1006poj aTMocdepH Koja
jé BAamasa TOKOM MOOKTOPCKHX CTyauja. 3a To caM IoceOHO 3axBasaH MwuaaHy
PagenkoBuhy, jep cMo mgocTa cAo60OHOT BpeMeHa IIPOBeAr y brainstorming-y, Koju je
Ha Kpajy pe3yATHpPao YCIIEIIHOM CIIPOBOhewmy pasHUX HAeja A0 KOjUX CMO JAOAA3HAU

Ha Taj Ha4UH.

[TocebHy 3axBasHOCT ayryjem ey ['0jKy, KOju je M3HEeHana IIPeMHHYO TOKOM H3pame
oBe auceprauuje. Haume, I'ojko je OMo H3BaHpenaH HHKEHEP U IIpOHaAasad, a
11oce0HO MH je IIOMOTao MIpen CaM MoYeTaK €KCIIEpPUMEHTAAHUX HCTPaKUBamha, TaKo
IITO je Kpeupao jedaH [Ae0 HMIIPOBH30BaHE MalllMHE Koja Ce KOPUCTHAA ¥
eKCcIIepuMeHTHMa KOju Cy CIIPOBENEeHH y TOKYy H3paze aucepraiyje. Ha xxkasoct, gena
['ojko HHUje moYeKao Ja BUOHU KPajibH Pe3yATaT UCTpazkKHUBamha, a BepyjeM maa 6u O6uo

IIOHOCaH Ha TO KaKo je merosa rromoh JAOIIPUHEAA U3Ppaau MOT JOKTOparTa.

XKeaeo OUxX a mo3ApaBUM M CBE KOAETe Koje Ccy ydecTBoBase y InnHF mpojekTy, u ca
KOjUMa caM KBAAUTETHO IIPOBOANO BPEME TOKOM AETHHX IIIKOAQ, KOH(EepeHIHja U
aKTHUBHOCTH KoOje Cy OHAe Be3aHe 3a caM mnpojekart. [ToceOHO ce 3axBamyjeM LleHTpy 3a
HMHOBaTUBHe byAcKe cucreMe (Centre for Innovative Human Systems) ca TpuHutu
KoAenia y [IabAuHYy 3a TO IIITO Cy IPUXBATHAH 14 IPBU [I€0 IIpakce, Koja je Oraa Be3aHa
3a IIPOjeKaT, CIIPOBEAEM Y BHUXOBOj HHCTUTYIHjU. Takohe, mocebHO 6MX ce 3aXBaAHO
HayuyHulu Nora Balfe, koja je peBuaupasa cBe pagoBe Ha KOjUMa caM pajauo U gasa
KOMEHTape KOju Cy BOAMAM ITOOObIIay KBaauTeTa objaBbeHUX panosa. [Topen Tora,
3axBasaH caM U Koaerama u3 komnanuje ARIA rme cam IIpoBeo APYTH €0 IIpakKce.
[TocebHO ce 3axBamyjem mpodecopku Micaela Demichela, Gianfranco Camuncoli u
Eleonora Pilone, 3a ®BHXOBy MOAPIIKYy TOKOM TOI' IlepHola, Kao M 3a rnomoh y
pelaBaky agMHUHHUCTPATUBHHUX NOpobOAeMa KOjU Cy Ce€ jaBbaAM TOKOM IIPOjeKTa.

Takobe, :xeauM na ce 3axBaauM KoMIaHUju Terpamnak us 'opmer MuaaHoBIa, ¥ K0jOj



cam 1npoBeo Tpehu neo npakce. [TocebHO caM 3axBasaH MeHalIMeHTy TeTpanaka, Koju
je IIperno3Hao MHOTeHIMjaa UCTPakKUBama, Koja Cy CIIpoBeleHAa Ha YHHUBEP3UTETY V
KparyjeBily 1 Koju cy HaM OMOTyhHAU [a Mepema CIPOBEAEeMO Ha pagHUIUMA ¥
HHIOYCTPHjCKOM OKpYyKely. 3a TO caM Heu3MepHO 3axBasaH [paromy0Oy Tajuhy u

Anexcannpy Bpkosuhy.

H3pas3uo 6ux CBOjy 3axXBaAaHOCT U MacTep cryneHTuMa Hukoan Bauayku u Credany
Bypuhy, 3a BHUX0BO 3ararame TOKOM €KCIIEpUMEHTAAHUX UCTPakuBamka U II0ce0OHOo 3a
TO IIITO Cy OPTaHHU30BaAU cTyAeHTe dPaKyaTeTa HHKEHEPCKUX HayKa (YHUBEP3UTETa ¥
KparyjeBity) na 1o6poBOBLHO yY€CTBYjY YV CIIPOBEAEHUM HCTpakKuBawmuMa. Takohe 6ux
JKEAe0 [a Ce 3aXBaAUM CTyOeHTKUM MuHm JeBToBUh (ca cMepa 3a IICHXOAOTH]Y,
dunozodcku akyarer, YHHBep3uTeT y Beorpany), 3a peleH3Hujy (puHasHE Bep3Hje

IpeBola OBe AHCEepTalHje.

XKeaeo O6ux ma ce 3axBaauM mbBrainTrain tumy (dparomry IlerpoBuhy, Mapky
CraukoBuhy, Bormany Muosuhy, UBany F'auropujeBrhy nu Muaenu OkoimnaHoBuh) 3a
IBbUXOBY XapABEPCKY M CO(MTBEPCKY IMOAPIIKY TOKOM IIEAOT Iepuosa MOKTOPCKUX

cTyayvja.

HeunsmMmepHy 3axBaaHOCT AyTryjeM CBOjuM poxremuMma Haau u [IparyTuHy, Kao U CECTPHU
KceHnuju 3a BUXOBY OPUTY U IIOAPIIKY TOKOM MOT CTyaupama. Takobe, xkeauM na ce
3axBasuM 60abu /byduru (Koja ce 6prHyAa cBake Helebe TOKOM MOjUX IIyTOBama), Kao
M OCTaTKy IIOpoAMIe Ha ITOAPIIIH KOjy CY MH IIpy:Kasu HOOHjao TOKOM JOKTOPCKHX

cTyayvja.

Y Kpaeyjesuy, 2016. 200uHe Aymop
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PE3HME

PA3SBOJ H HMIIAEMEHTAIITHJA MYATHMOJAAHOT CHCTEMA 3A IIPAREIBE
IIAIKIBE PAITHUKA Y PEAAHOM PAITHOM OKPYIKERY

Karo mexHonozuja cmanHo Hanpedyje, uHoycmpujcke Hecpehe Koje ce ee3yjy 3a
HeucnpasHocm mexHUUKUX cucmema CY CKOpo CKpo3 ymarbeHe. H3 moz pasnoea,
spyocka 2pewra ce emampa yspouHukom oko 80% Hecpeha y unoycmpuju. JedaH oo
27IABHUX Y3POUHUKA JbyOCKe 2peulke je JAUMUMUPAHA MEHMANHA U30pIK/bU8oCm
JbYOCKUX onepamepa, Koja Y3pokyje nad Yy naxxrbu pacoHuKa U nocieduuHo 8o0u 0o
epewarxa y pady. KnacuuHe epzoHOMCKe Mmemolde Koje ce Kopucme 3a NpoueHy
KOZHUMUBHOZ2 CMArA U08EKA CY Y2/lAHOM KeanrumamusHe u cybjekmueHe, u npema
mome cy NpuauuHo HenoyszoaHe. H3 moz pasnoza, ncuxogpu3uosouKu CeH30pU CY
nouesu 0a ce Npumeryjy Yy epeoHOMUCKUM UCMPAIXKUBAHUMA, CA YUJoMm Oa obe3bede
objekmueHe U KeaHMumamugHe mepe paoHUKo802 KozHUmMueHoz cmarba. I[Ipamehu
maj mpeHo, Heypoep2oHOMUJa Ce NOjasUNA KAO HAYUHA NOO-OUCUUNAUHA ep2OHOMUjE.
ITpedHocm Kopuwhetrba HeypoepeoHOMCKUX Memooa, je Yy mome ulmo HeypoepeoHoMUja
ucmpaxyje YHKUUOHANHY 3asucHocm usmeby ouHamurke mo3za U buxesuopantHux
napamemapa u maxko 3aobunasu meopemcke ee3e Koje onucyjy Kopenauwjy usmeby

osux napamemapa, a Koje cy KopuwheHe y epeoHOMUJU.

Osa ducepmauyuja npedcmasba HAYUHU OK8UP 30 MYJAMUMOOANIHU CucCmem Koju
je npeonoskeH Oa ce kKopucmu 3a npahe na’kKrwe padHuKka U Koju Kopucmu
ncuxogusuosiouwlke ceHzope u buxesuopanHa wmeperba. Cucmem ce cacmoju 00
NCUX0PU3UONOUKUX CEH30pa, KAO WMo CY: 2a18AHCKU peaKyujy KoxKe (eHe. galvanic
skin response - GSR), wmeperwwe omryuaja cpua (eHe. heart rate -HR) u
enexpoeryegpanozpagujy (eHe. Electroencephalography - EEG); 6uxesuopasnHe
Mmodanumeme Kao wumo cy: Bpemena peaxyuja (eHe. reaction times — RTs) u ceH3ope 3a
npaherbe nokpema (eHz. motion capture — MoCap), “Kinect” the “Leap Motion”. Haxo je
npeocmas/beH 0K8UpP 3A CHUMAHE NOMEHYMUX MOOAIUMEeMA Y PeATHOM 8pemeHYy, 080
ducepmauyuja je pokycupara Ha peyamame Koju cy oobujeHu cHumarwem EEG, RTs u

Kinect mooanumema.

I'nasHu yumwm OJucepmayuje je ucmpaxxusare wmoyhHocmu Kopuwheroa
caspemeHoz npeHocHoz EEG-a y uHOycmpujckum ycrosuma, ca yubem npahersa
naxre paoHura. IIpemxooHa ucmparkuearba kKoja cy kopucmuna EEG cy 6una
yanasHom obasmara Yy KOHmMpoaucaHum nabopamopujckum ycrosuma u 3602 moaa,
Hanasu u3 mux cmyouja ce ysumajy ca oopebeHom 0oszom pesepege. [a 6u ce CHUMUO

I
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EEG y peanHoOM paodHOM OKpYy»Kery, PAaoHO Mecmo Y Kojem pacoHuyu ckianajy
XUOpAyAUUHO UYpeeo je 8epo0oCmOjHO pPeniuyupaHo u cybjekmu y cmyouju cy

CUMYNUPANU MaA] NPOUEC.

Lucepmayuja ce cacmoju 00 uemupu ekcnepumeHmanHe cmyouje. Y npeoj
cmyouju, UCNUMUBAHO je KaKo uecme MUKpo-nayse ymuuy Ha HUB0 Na’kKree paoHura,
nopedehiu amnaumyoe P300 Komponente evociranih kognitivnih potencijala (eng.
event-related potential — ERP) npe u HenocpeOHO nocie nepuooa mukKpo-nayse. I nasHu
Haas je 0a MuKpo-nayse no3umueHo Yymuuy Ha HUB0 NAXKrbe paoHUKA U NPeosloIKeHO
je mwuxoseo ykKmyuere Y OHesHe aKmueHocmu padHuka. Y OJOpyeoj cmyouju,
UCMparku8aHo je 0a iU padHUuUyU UMajy 8efiu HUBO NaXKrbe YKOJAUKO UM je HaAMEemHYmo
ca Kojom pykom O0a nouHy ckaanarbe upeea. [lge ncuxosiouwke napaduzme cy obune
npeocmas/beHe YUeCHUuYuUMa Yy cmyouju, napaneiHo ca CUMYAUPAHM AKUUJOM
ckananarea ypesa. Y npeoj napadusmu, YuecHUyu cy mozau oa usabepy oa omnouHy
onepaywjy ca 6uno Kojom pykom, 00K cy Yy Opyaoj bunu ycnosbeHu O0a 3anouHy
onepauwjy pyKkom koja o0208apa cmepy cmpenuye Koja ce npukasusala Ha eKkpaHy
ucnped rux. 080 ucmpaxkuearbe je omKpusio 0ad CY YUeCHUYU umaiu gehu HUB80
naxrwe Yy CcIyuajy Ycnioemasarbd KOjoM pYyKom Oa 3anouHy onepaulwjy, jep je
amnaumyoa P300 komnoHeHme buna 3HAUQjHO suwa Y nopebery ca cayuajem Kaoa

cy moznu cnobodHo 0a usabepy ca Kojom pykom he sanouuroamu 3a0amax.

Ilpeocmane dse cmyouje cy umane 3a yub 0a npedcmase okeup 3a npaheroe
KOZHUMUBHO2 CMAarba PAOHUKA Y peanHom epemery. Tpeha cmyouja je ucnumusana
nponazuparbe P300 amnaumyde u Kopenauuja usmeby P300 amnaumyoe u eapemeHa
peaxyuja je ucnumugaHa. Ha epynHom HU80Y, jacHa HezamusHa Kopesiauuja uzmeby
osa 0esa modanumema je npoHabeHa, mehymum oHa Huje 6una KOH3UCMEeHMHA HA
uHousuUOyaHOM HUB0Y. 3602 moaa je HaznaueHa nompeba 0a ce o8aksu peyaimamu
npujaseyjy HA UHOUBUOYANHOM HUBOY Y epaoHomcKum cmyoujama. Ilocnedroe
ucmpaxxuearbe Koje je npeocmas/beHo je UCnuUmueaslo 0a Ju je KoAuduHa nokpema
KOoju HUCY Y OUpPeKmHOj 8e3u ca 3a0amKom, HeeamueHo N08e3aHA Ca NAXKHOM PAOHUKA.
Y mom uyumy, npeonoxeHa je memooa Keamugpurkayuje osux nokpema nomohy
KOHUenma eHepauje nokpema. IIperumuHapHu pesyamamu nomsphyjy oa je eHepauja
nokpema HeeamueHo KopenucaHa ca EEI" modaumemuma naxre u npeososKeH je

HayuHu okeup byoyhez cucmema 3a npaherbe naxKre Yy pearHom epemery.

Krnyune peuu: Heypoepeoromuja, Ilaxkrwa, Bexkuuna enekmpoeruegpanozpaguja,
Event Related Potentials, P300 komnonerma, Hroerxc anzaxosarsa, Kinect, 3adamax

Epojesu, 3adamarx Cmpenuuye
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ABSTRACT

Development and Implementation of Multimodal System for Attention
Monitoring in Naturalistic Work Environments

As technology is ever advancing, industrial accidents related to technological
malfunctioning have been almost diminished, leaving the human error responsible for
up to 80% of the remaining accidents. One of the main causes for this is limited mental
endurance of human operators’, which causes the attention decline and consequently
leads to an operating error. Classical ergonomics methods for assessing the operators’
cognitive state are still dependent on the subjective and qualitative methods, thus being
unreliable. For that reason, in the recent years the psychophysiological sensors were
included in the ergonomics research, with the aim of providing the objective and
quantitative measures of the operators’ cognitive state. Following that path, the
neuroergonomics emerged as a scientific discipline, which investigates the human
brain functions in relation to performance at work. The advantage of using
neuroergonomics is that it investigates the functional relationship between brain
dynamics and behavioral parameters, thus avoiding theoretical constructs that
describe the correlation between these two, and which are ubiquitously used in

ergonomics research.

The present dissertation introduces a framework for the multimodal attention
monitoring system, utilizing psychophysiological and behavioral measurements. The
multimodal system consists of psychophysiological sensors, such as galvanic skin
response (GSR), heart rate (HR) sensor and electroencephalography (EEG), the
behavioral modality of the reaction times (RTs), and the motion capture (MoCap) sensors
Kinect and the Leap Motion. Although the framework for synchronous and real-time
recording for all the sensors was provided, this thesis was focused solely on the results

obtained from the EEG, RTs and Kinect recordings.

The main aim of the presented dissertation is to investigate the possibility of
utilization of the recently available wearable electroencephalography (EEG) in
industrial setting, with the goal of the operator’s attention monitoring. Previously
reported EEG studies that were concerned with the attention states of the operators
were mainly confined to the strictly controlled laboratory conditions and therefore, the
findings from these studies needed to be taken with the certain ambiguity. In order to
record the EEG in naturalistic environment, specific workplace where operators’

assembly the hoses, used in hydraulic break systems in vehicles, was faithfully
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replicated and the participants in the studies simulated the manual assembly

operations.

The present dissertation consists of four experimental studies, where the first two
were concerned with investigation how different work conditions influence the cognitive
state of the operators’, i.e. the studies were concerned with the assembly task design.
In the first study, the influence of the frequent micro-breaks on the cognitive state of the
workers’ was investigated, by comparing the P300 event-related potential (ERP)
amplitude prior and immediately following the micro-break period. It was found that
the micro-breaks enhance the attention of the operators’ and the proposal for their
inclusion in the regular work routine was made. Second study investigated the
influence of hand alteration on the attention level of the operators’. For that aim, the
participants in the study were presented with two distinct task: the one in which they
could initiate the assembly operation with whichever hand they preferred, and the one
in which they were conditioned with which hand they should initiate the operation.
This study revealed that the instructed responding induces the higher attention, as
assessed through the P300 component’s amplitude, compared to the experimental
condition where the participants could freely choose the hand for the initiation of the

assembly operation.

Further, a framework for the on-line assessment of the operators’ cognitive state
was provided. In the third experimental study, the propagation of the P300 component’s
amplitude was observed and correlated with the RTs. On the group level, a negative
correlation was found, confirming the previously reported finding. However, due to
individual differences, the correlation on the individual level was inconsistent,
emphasizing the necessity for the individualized EEG measurements for the reliable
attention monitoring system. Finally, it was investigated whether the quantity of task
unrelated movements corresponds to attention of the operator, as previously shown to
be negatively related to the attention of operators’. For that aim, the concept of
movement energy (ME) was introduced and correlated with EEG attention-related
modalities. The initial finding from this study showed that the ME is negatively related
to the EEG attention-related modalities and proved that the future attention monitoring

system can be built based on these modalities.

Key words: Neuroergonomics, Attention, Wearable Electroencephalography, Event
Related Potentials, P300 Component, Engagement Index, Kinect, Numbers task, Arrows
task
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1.Introduction

In the early years of industrialization, industrial accidents were reported mainly in
terms of technological malfunctions, ignoring the human element as the cause
(Gordon, 1998). However, as the technology became increasingly reliable, failures
related to it have been dramatically reduced, attributing majority of the remaining
accidents to the human elements in the system (Hendy, 2003). Importantly, humans
are often characterized as the most fallible element in the production line, mainly due
to limited mental and physical endurance that can sometimes cause behavior and
responses to be unpredictable (Hamrol et al., 2011). Due to mental strain, human
element in the production system is responsible for 80% of all industrial accidents

(Reason, 1990; Stanton et al., 2005).

In order to reduce the human participation in production system, industry
tends to automate as much processes as possible, thus reducing the probability of
human error and increasing productivity. However, although manufacturing industry
has aimed to reach “lights-out” manufacturing, i.e. fully automated factories (Topkins
et al., 2010) in which the human failures should be reduced as humans would be
exempted from the production processes itself, there are still many industrial
processes relying on human operators. Important notion is that occupational health
and safety (OHS) researchers and specialists are persuaded that significant increase
in human operators’ errors are actually linked to the growing incompatibility between
workers and modern technology (Fafrowicz and Marek 2008). Thus, studying how
human operators interact with the system has received considerable attention in both

scientific research and industrial practice (Stanton et al., 2005).

The scientific discipline that investigates the interaction between system and
human operators is called human factors and ergonomics (HF/E) or ergonomics
(Salvendy, 2012). Classical ergonomics approach for studying human cognitive state
and the interaction between humans and operating system mainly utilizes qualitative
and subjective methods, such as questionnaires and measurements of overt
performance. However, these methods are often unreliable and unable to investigate
underlying (covert) cognitive processes of workers during their everyday routine in

industrial environments (Parasuraman, 2003). Moreover, classical ergonomics
1




methods are unable to provide the real-time data acquisition and processing. For
that reason, neuroergonomics emerged as novel path in ergonomics research
(Parasuraman, 2003; Parasuraman and Rizzo 2006). Neuroergonomics merges
knowledge form ergonomics and neuroscience, and it is defined as the science
discipline that studies the human brain in relation to work (Mehta and Parasuraman,

2013a).

This dissertation, which presents a partial fulfilment of the requirements for
the degree of PhD in Engineering, is concerned with the neuroergonomics studies of
manual assembly workplaces, where operators are performing monotonous and
repetitive manual assembly operations. For that aim, advances in both ergonomics
and neuroergonomics are discussed in introductory chapters, following which general
methodology for the development of the multimodal system for recording and analysis
of multiple signal modalities, which are related to cognitive state of the workers, is
presented. Finally, four neuroergonomics studies are presented and the results
discussed. The findings from these studies could be used for the manual assembly
task design. Finally, the framework for the on-line attention monitoring is presented

and discussed.

1.1 The aim of the Dissertation

Existing literature on ergonomics is mainly concerned with the physical ergonomics,
i.e. with the postural loads and prevention of potential work-related musculoskeletal
disorders (MSDs). However, far less attention is dedicated to the cognitive states of
the workers. Moreover, as discussed in previous section, the methodologies that are
used for the assessment of cognitive states of workers are unreliable. For that reason,
this dissertation aims in investigating the applicability of the neuroergonomics
methods for the assessment of the cognitive states of the workers during monotonous
and repetitive manual assembly operations. In order to achieve this goal, a workplace
replica was create at the Faculty of engineering (University of Kragujevac), where
participants in the study were simulating manual assembly operation while wearing

wearable sensor network for recording the physiological signals of workers.

The second aim is investigation of the possibilities for recording the body

movements of the participants, by using the motion capture (MoCap) devices that
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relies on structured light technology. In this way, the movements can be recorded
without the need for the markers and therefore, the participants in the study are not
imposed to any movement constraints. Usually, the studies that used the MoCap
devices for the ergonomics were concerned with the prevention of the work-related
MSDs. However, the body movements could be an important indicator of cognitive
states. Therefore, in presented experimental settings, the MoCap devices were mainly

employed for the estimation of the cognitive state of the participants.

In the Chapter 5, a general methodology used for the achievement of the
previously mentioned goals was presented. Finally, a relationship between behavioral
and brain signal modalities were investigated with the aim of investigating which
factors are influencing the cognitive state of the workers’ employed on manual

assembly tasks.

An important notion is that the multimodal framework presented in the
Chapter 5 consists of physiological sensors (electroencephalography (EEG), galvanic
skin response (GSR) and heart rate (HR) sensor), MoCap sensors (Kinect and Leap
motion) and recording the reaction times (RTs) as a behavioral modality. However, for
the aim of present dissertation, only the results for the EEG, Kinect and RTs signal
modalities were processed and the results from these studies will be presented and

discussed.
1.2 Theoretical background

In order to provide objective parameters of workers’ cognitive state Parasuraman
(2003) proposed a novel path in ergonomics research, which was tentatively named
neuroergonomics (Parasuraman, 2003). The main objective of neuroergonomics is the
objective assessment of how the brain carries out every day and complex tasks in
naturalistic work environments (Parasuraman 2003; Mehta and Parasuraman
2013a). In its essence, the neuroergonomics is able to provide precise analytical
parameters depending on the work efficiency of individuals, by directly investigating
relationship between neural and behavioral activity (Fafrovicz and Marek 2007). In
this way, unreliable user state evaluation based on theoretical constructs, which are
mostly describing cognitive states of the workers related to the task execution, can

be avoided (Fafrovicz and Marek 2007).




Widely used technique for neuroergonomics studies was functional near
infrared spectroscopy (f{NIRS), mainly due to its high mobility and low cost. {NIRS has
been successfully applied for objective measurement of mental workload for spatial
orientation and for studying the mental fatigue, and attention of the operators (Ayaz
et al., 2011; Mehta and Parasuraman, 2013b; Li et al., 2009), etc. However, fNIRS
provide indirect metabolic indicators of neural activity and it has low temporal
resolution (Mehta and Parasuraman 2013). On the other hand, techniques for direct
measurement of neural activity that provide high temporal resolution, EEG and event
related potentials (ERPs), were moderately mobile and the most of the research was
confined in the laboratory space or simulators, thus limiting the usefulness of such
a measurements in neuroergonomics research (Mehta and Parasuraman 2013a; Fu
and Parasuraman 2006). However, as technology advanced EEG became increasingly
mobile and eventually wearable, providing possibility to directly observe neural

activity in applied environments (Wascher et al., 2014; Mijovi¢ et al., 2014).

EEG provides the possibility to both timely and objectively detect the critical
behavior of humans (e.g. drops in attention, error, etc.) and it has been confirmed as
a reliable tool in estimating ones' cognitive state (Klimesch et al., 1999; Luck, et al.,
2000; Murata et al., 2005; Yamada 1998). Analysis of the ERPs, extracted from
continuous EEG recording, represents commonly employed method in evaluating
ones’ neural activity (Hohnsbein et al., 1998). Picton et al. (2000) defined ERPs as
‘voltage fluctuations that are associated in time with certain physical or mental
occurrence’. ERP components are defined in terms of polarity and latency with
respect to a discrete stimulus, and these components reflect a number of specific
perceptual, cognitive and motor processes (Brookhuis and De Waard 2010). In that
sense, so-called P300 (also called P3) component is the positive deflection in terms of
voltage, appearing around 300ms after the stimulus presentation (Gray et al., 2004;
Polich and Kok 1995). The amplitude and latency of the P300 component are often
used to identify the depth of cognitive information processing, being strongly related
to the attention level (De Vos et al., 2014a; Johnson 1998; Polich 2007). Another EEG
feature that is used for estimation of the level of cognitive engagement in the task is,
so called, engagement index (EI, Prinzel et al. [2000]). EI is calculated as the ratio
between fast going brain oscillations, which reflect the state of wakefulness and

alertness state (so called beta waves) and the summation of waves of low frequency
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that reflect the state of sleepiness and low alertness (so called alpha and theta waves),

i.e. EI=f/(a+1).

Although Parasaruman (1990) proposed the idea of applying ERP recording in
operational environments, in order to address various HFE problem areas, only very
recent studies provided possibility of recording ERPs in applied environments by
utilizing available wireless connections (Debener et al., 2012; De Vos et al., 2014a;
Wascher et al., 2014). This finally allowed merging EEG with the guiding principle of
neuroergonomics, and examination of how the brain carries out complex everyday
work tasks in realistic environments (Parasaruman and Rizzo 2006). Present
dissertation proposes a new paradigm’in ergonomics research through utilization of
ERP measurement in naturalistic workplace environment, where manual assembly
operation was simulated. The research presented in this dissertation is one of the
first studies, which utilize a wireless 24-channel EEG recording for the ERP
extraction in naturalistic environment (as it will be presented in Chapters 5, 6, 7, 8
and 9). The main aim of the presented dissertation is the investigation of possibility
of studying the attention of an assembly worker. As the main disadvantage of the
EEG measurement, its immobility is now overcome, it is believed that its utilization

in the real workplace environments will be ubiquitous in the years to come.

Another modality that can provide a continuous-like assessment of human
attention level is a behavioral measure of the reaction times (RTs, [Larue et al., 2010;
Sternberg 1969]). RT represents a time interval from the indicated start of operation
(stimulation), until the moment of the action initiation and the main reason for wide
usage of RT measurements is that they are easy to obtain and simple to interpret
(Salthouse and Hedden 2002). However, the major drawback of experiments involving
RT is that they usually consist of a stimulus followed by the response, without direct
possibility to observe the mental processing that occurs between stimuli (Luck et al.,

2000; Young and Stanton 2007).

Additionally neuroergonomics is concerned with the body movements, since
the humans interacts with the systems through a physical body (Parasuraman and
Rizzo, 2006). In fact, it was previously shown that the number of task unrelated
movements is negatively correlated with the attention of a person (Roge et al., 2001).

However, the study of Roge et al. (2001) quantified the task unrelated movements
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using manual counting of these movements in a post hoc analysis. Therefore, this
dissertation investigated the possibility for the automation of this analysis, with the
usage of the modern MoCap sensors, by using the proposed concept of movement
energy (ME) that is presented in Chapter 9 of this dissertation. In this way the
estimation of cognitive state of a person could be investigated with MoCap sensors in

a unobtrusive way.
1.3 Main Hypotheses

This dissertation is based on the following ground hypotheses:

Hypothesis 1:

Firstly, it will be investigated whether multiple signal modalities, that are
heterogeneous in both type and sampling frequency, could be recorded
simultaneously and synchronously in naturalistic work environment. If this prove
possible, than an overall multimodal system framework (consisting of EEG, GSR,
HR, Kinect and Leap Motion sensor) for the assessment of operators’ cognitive

state will be presented.

Hypothesis 2:

Starting from the assumption that RTs and psychophysiological signals can
objectively reflect the operators’ cognitive state, the hypothesis is that the RTs will
be negatively correlated with the psychophysiological signals that reflects the
attention of the operators’, i.e. the time needed for performing the simulated
operation will be longer once the attention level, observed through

psychophysiological signals, shows lower values.

Hypothesis 3:

Studies that are concerned with the relationship between RTs and
psychophysiological signals are mainly conducted on the group level. Therefore,
the third hypothesis is that, even if the second hypothesis shows to be valid at the
group level, the interindividual differences between the participants can influence
the consistency of the results on the individual level. If the results shows that

there is no consistent correlation between the RTs and psychophysiological
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signals on the individual level, these results should be further investigated, the
advantages and disadvantages of both RTs and psychophysiological signals
should be considered, and the most reliable tool should be adopted for further
studies of the workers’ cognitive state. An important notion is that RTs are more
sensitive to strategic responding in comparison to more automated responding
that participants cannot control, such as ERPs (that are considered to be the ‘21st

century RTs)).

Hypothesis 4:

It is hypothesized that the attention level of the operators” can be enhanced
through introduction of frequent micro-breaks. In order to confirm the hypothesis
the attention of the participants in the study will be assessed prior and
immediately after the micro-break period, through investigation of the P300

component’s amplitude.

Hypothesis 5:

Another hypothesis that was under investigation is whether the instructed hand
responding can enhance the attention level of an assembly worker. In order to test
this hypothesis, the participants were imposed to two distinct task conditions. In
the first condition, the participants could chose to initiate the assembly operation
with whichever hand they prefer, while in the second condition, the participants
were requested to initiate the action with the hand that correspond to the direction

of the arrow that appeared on the display in front of them.

Hypothesis 6:

Finally, as already reported in the Section 1.2. the quantity of task unrelated
movements is negatively correlated with the human attention. Therefore, this
hypothesis tested whether this information can be automatically obtained
through introduction of the methodology that is based on movement energy (ME).
In order to test this hypothesis, the body movements will be recorded with the
Kinect sensor and ME will be calculated. Finally, the ME will be correlated with

the attention-related modalities obtained from the EEG recordings.




1.4 Methods

Firstly, the replicated workplace was created, in which the participants in the study

simulated manual assembly operation. Further, the participants were equipped with

the wearable sensor network, which consists of sensors for recording physiological

sensors (EEG, GSR and HRV), and the sensors for recording the movements of the

participants, namely Kinect and Leap Motion sensor. Upon creation of sensing

environment, the data were recorded and processed using following methodology:

EEG signal processing was performed using EEGlab toolbox (Delorme and
Makeig, 2004) and Matlab 2013b (Mathworks Inc., Natick, MA).

For the analysis of the data obtained from the Kinect sensor the Matlab 2013b
was used.

The analysis of the data obtained from the GSR sensor is meant to be
performed in Matlab 2013b and the LedaLab (http://www.ledalab.de, plug-in
for the Matlab software)

The analysis of the heart rate variability (HRV) is meant to be performed in
Matlab, 2013b
The statistical analysis of all data was performed in the IBM SPSS v.20

1.5 Expected Results

The following results are expected upon accomplishment of the research conducted

during the doctoral studies:

1)

2)

3)

4)

An overall framework for multimodal synchronous recording and analysis of
psychophysiological and motion signals for the aim of objective assessment of
operator’s cognitive state will be provided.

The methodology for the objective assessment of operator’s cognitive state,
using wearable EEG will be provided.

Guidelines for the manual assembly task design will be provided, with the aim
of enhancing the operators’ level of attention.

The methodology for quantification of the task unrelated movements, using

the movement energy will be provided



http://www.ledalab.de/

5) Reaching above-mentioned goals, it is aimed in reducing the human errors in
production lines, more closely in the assembly operations. Finally, timely
detection of the drops in attention and deviations in cognitive state of the
workers should lead to reduction of work-related injuries, economy loss,
influence of human factors in industrial accidents, etc., which should
ultimately lead to improvement of the workers’ overall well-being in industrial

environments.
1.6 Chapter-by-Chapter Overview

Chapter 1 briefly discuss the shortcomings of existing ergonomics methods for
objective assessment of the operators’ cognitive state in workplace environments. It
further briefly discuss about the advantages of neuroergonomics methods over
classical ergonomics approaches. This chapter outlines the importance of objective
measurement of operators’ cognitive state and it provides the outline of the main
objectives and main objectives of the present dissertation. It further provides the brief
theoretical background of the present work and ground hypotheses. Further, the
used methodology for the data processing and statistical analysis was briefly

presented.

In Chapter 2, a brief overview of scientific field of ergonomics is presented. Further,
four main domains of ergonomics research are presented and the advantages and

disadvantages of each domain are discussed.

Chapter 3 introduces the Neuroergonomics as a science discipline and the benefits
of wusing neuroergonomics over solely ergonomics principles. Since the
neuroergonomics relies on neuroimaging techniques, an overview of neuroimaging
techniques that can be used for the neuroergonomics studies is provided. Further,
the advantages and disadvantages of each methods for recording the brain activity in
naturalistic environment are discussed. As the EEG was used in studies that
constitute the present dissertation, special focus was on EEG and wearable EEG
studies that were conducted with the aim of investigating the cognitive state of the
operators. Moreover, since other physiological sensors (other than neuroimaging
techniques) can be used for estimating the cognitive state of the operators’, HR and

GSR sensor are also introduced and literature review of studies that used these




sensors in ergonomics studies is presented. Finally, studies that used multimodal
approach, combining EEG, GSR and HR modalities were reviewed and benefit of

using such recordings was outlined.

In Chapter 4, a literature review of using the MoCap technology for ergonomics
studies was provided. The focus was on recently available consumer devices that uses
structured light technology and thus does not require external markers for reliable
motion tracking of a person. Finally, utilizing the MoCap technology for the aim of
assessing the cognitive state of the workers’ was proposed, which is based on

automated quantification of task unrelated movements.

General methodology that was used in experimental studies, which were conducted
for the aim of present dissertation, is provided in Chapter 5. This chapter begins with
the introduction of the concept of the implicit human—-computer interaction (HCI) and
its possible application for cognition-aware computing in industrial settings. Further,
a workplace replica is presented, where the participants in experimental studies
simulated the manual assembly operations. In addition, the sensors used in the
studies are presented, together with their technical specifications. Finally, the overall
system architecture of the multimodal system for estimating the operators’ cognitive

state is presented and discussed.

Chapters 6, 7, 8 and 9 are actual experimental studies that were conducted at the
Department of production engineering (Faculty of Engineering, University of

Kragujevac) as part of present dissertation.

An experimental study in which it was investigated whether the introduction of
frequent micro-breaks can have a positive influence on attention level is presented in

Chapter 6.

Chapter 7 is consisted of an experimental study in which it was investigated whether
the attention level of an assembly worker can be enhanced if the he is conditioned

with which hand he should start the manual assembly operation.

In Chapter 8, the relationship between P300 component’s amplitude and RTs was
investigated and a general framework for the future real-time attention monitoring of

the operators’ attention is provided.
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Chapter 9, presents an experimental study in which it was investigated whether the
cognition-aware computing can be utilized in industrial environments. For that aim,
a multimodal study, which consisted of EEG and Kinect sensor, was conducted. The
main objective was to present the concept of ME and to investigate the correlation

between P300 amplitude, EI and ME.

Finally, general conclusions from all experimental studies is presented in Chapter 10

and the directions of future studies are discussed.

Graphical representation of the chapter-by-chapter overview is presented on Figure

1-1.
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2.Human Factors and Ergonomics (HF/E)

Ergonomics is the science discipline which studies the interaction between humans
and other elements of a system (Salvendy, 2012), and if successfully applied, it can
prevent accidents and improve overall safety and health in industrial environments
(Imada 1990). The origin of word ergonomics comes from the Greek “Ergon”, which
means work and “Nomos”, which means law. Therefore, ergonomics is considered as
the science of work (Canas et al., 2011; Salvendy 2102). Another term that is
synonymously and interchangeably used with ergonomics is Human Factors and

Ergonomics (HF/E, [Salvendy, 2012]).

HF/E is independent discipline of human-artifact interactions (Salvendy, 2012). It is
multidisciplinary science, which utilizes and consolidate knowledge from diverse
science disciplines including engineering, design, technology and management of
human-compatible systems and technology, while taking into account variety of
natural and artificial products, processes, living and working environments
(Kawrowski, 2005). Steaming from its interdisciplinary nature there is no unique
definition of HF/E, rather a large number of definitions were previously reported in
the literature (Wogalter et al., 1998). Probably the most concise definition was
provided by Dempsey et al. (2000): “Ergonomics is the design and engineering of
human-machine systems for the purpose of enhancing human performance”. As such,
HF/E is concerned with the design and evaluation of jobs, tasks, environments,
products and system, while it tends to create compatibility of these with the abilities,

needs and limitations of people (Salvendy, 2012).
2.1 HF/E Domains

Although HF/E has very comprehensive scope and extensive subject of interests, four
main domains of application, which are crucial for investigating the interaction
between humans and socio-technical systems, can be recognized nowadays (Stanton
et al., 2004; Canas et al., 2011). These are: physical ergonomics, cognitive
ergonomics, organizational ergonomics and recently emerged discipline of

psychophysiological and neuroergonomics domain.
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2.1.1 Physical Ergonomics Domain

The use of physical ergonomics to assess how work is done is one of the most studied
domain in HF/E studies, mainly because many aspects of industrial work are
physical in nature (Stanton et al., 2004; Vignais et al., 2013), and it is commonly
referred to as ‘classical ergonomics’ (Hollangel, 1997). Physical Ergonomics is
concerned with anatomical, anthropometric, biomechanical and physiological
parameters of workers (Canas et al., 2011). Physical ergonomics issues include
working postures, materials handling, repetitive movements, work-related
musculoskeletal disorders (MSDs), workplace layout, safety and health (IEA, 2015).
The main aim of physical ergonomics is the improvement of musculoskeletal health

at work (Vieira and Kumar, 2004).

Exposure to risk factors for work-related MSDs is wusually assessed using
methodologies, which can be divided into self-reports, observational methods and
instrument-based (called Direct) methods (Vignais et al., 2013; Diego-Mas and
Alcaide-Marzal 2013).

Self-reports are usually used to quantify discomfort of the workers, since presently
the methodology for direct observation of discomfort or objective measurements does
not exists (Stanton, 2004). Self-reports include questionnaires, work diaries and
interviews. As such, they are highly subjective and unreliable, because the
interpreted results depend on both the worker’s literacy and on the experience of the

experimenter (Vignais, 2013).

Observational methods are based on direct observation of the workers during the
course of their operation. The main goal of observational methods is to assess
worker’s behavior on predefined sheets, e.g. Rapid Upper Limb Assessment (RULA)
sheets, by either on field observation or by videotaping workers and then conducting
analysis during replying videos (Vignais, 2013). The advantage of these methods is
that they are straightforward to use, applicable to wide range of working operations
and relatively low cos. However, drawback is that the data collection systems are
inaccurate and provide rather broad results (Diego-Mas and Alcaide-Marzal, 2013).
Additionally, the presence of the observer during the work routine can influence can

lead to higher performance of the workers, due to Hawthorne effect (Adair, 1984).
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Instrument-based or direct measurement methods are usually conducted by sensors
that are attached to the recording subject, with the aim of objective measurements of
the workers’ activities (Stiefmeier et al., 2008; Diego-Mas and Alcaide-Marzal 2013).
These kind of measurements are preferred, since the data acquisition is accurate.
However, it was argued that these measurements are not suitable for use in real-
work situation (Diego-Mas and Alcaide-Marzal 2013) and that the recording
equipment is costly (Trask and Mathiassen, 2012). Nevertheless, Stiefmeier et al.
(2008) presented the case study in automotive industry, while workers were wearing
the jacket equipped with Internal Measurement Units (IMUs) and they reported no
discomfort during the regular operation. Moreover, with the recent technological
advancement and development that relies on structured light technology (Salvi et al.,
2004) the direct measurements are possible without the need for workers’ to wear
recording sensors. Additionally, with the introduction of the e.g. Microsoft Kinect, the
costs of such a systems drastically decreased. Therefore, nowadays it is possible to
conduct direct observation methods in work environments at relatively low cost, while

no posing discomfort to the workers (Dutta, 2012).

2.1.2 Organizational Ergonomics (Macroergonomics) Domain

Organizational ergonomics (also called macroergonomics) domain is concerned with
the overall design of work systems (Stanton et al., 2004; Hendrick and Kleiner, 2005).
Organizational ergonomics deals with the optimization of sociotechnical systems,
including their organizational structure, policies, and processes (IEA, 2015). It
emerged as an ergonomics domain back in the 1978, and since then there has been
increased interest of practitioners and researchers in studying the human

organizational factors (Kleiner, 2008).

In the early years of the HF/E, the industrial accidents were attributed either to
failure of technology and latter to the human error (Gordon 1996). However, the
accident at the Piper Alpha, which received many research interests, showed
dependence of the performance of complex socio-technical systems on technical,
human, social, organizational, managerial and environmental elements (Pate-Cornell
1993; Gordon 1996; Mearns et al., 2001). The Piper Alpha disaster increased

awareness for both practitioners and scientists that these factors can be important
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co-contributors to incidents which could potentially lead to a catastrophic event

(Gordon 1996), thus emphasizing the need for organizational ergonomics.

Organizational ergonomics mainly promotes the safety climate as one of the most
important precondition for safe working environment (Zohar, 1980; Gordon, 1996).
In the seminal paper of Zohar (1980), it was found that the strong management
commitment to the safety leads to safer production. That is, he reported that in low
accident companies the top management was personally involved in safety activities
on a routine basis (Zohar, 1990). However, the underlying HF/E factors that affect
safety can be defined as organizational, individual and group factors (Gordon, 1996)
and therefore, it is important to study interaction between all these factors in order

to create the safety climate in industry (Bentley and Tappin, 2010).

It was proposed that workers’ attitudes and perception to safety could be measured
using safety climate questioners and that safety-related behaviors could be evaluated
using checklists, while the organization safety could be evaluated through audits or
analyzing the documentation of the industrial (companies) safety management
system (Cooper, 2000). However, these measurements related to the individual
factors are qualitative and use the overt performance measurement, thus being
unreliable (Parasuraman, 2003). For the aim of objective assessment of factors that
are influencing the cognition and perception of the workers, the scientific domains of

cognitive ergonomics and neuroergonomics emerged.

2.1.3 Cognitive Ergonomics Domain

Cognitive ergonomics domain is concerned with studying cognitive processes at work,
with an emphasis on an understanding of the situation and on supporting reliable
and effective performance (Canas et al., 2011). It is concerned with mental processes,
such as perception, memory, reasoning, and motor response, as they affect
interactions among humans and other elements of a system (IEA, 2015). While
‘classical ergonomics’ is concerned with the quality of working from the physical
ergonomics point of view, the cognitive ergonomics is trying to describe how the work
affects the mind, as well as to describe how the mind affect the work (Hollangel, 1997).
In that sense, it can be said that cognitive ergonomics represents the merging of

‘classical ergonomics’ with cognitive psychology.
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The ubiquitous implementation of automated processes have shifted the
responsibility of the workers from physical activities to the ones that requires the
ability of workers to sustain attention over prolonged period of time (Hollangel, 1997),
i.e. humans are nowadays shifting their role from active controllers to the one of
system supervisors (Warm et al., 2008). Therefore, instead of physical skills, workers
are responsible for planning and reasoning and they are required to possess problem-

solving skills (Hollangel, 1997).

Studies of risks in workplace are traditionally divided into two directions. On the one
hand there are post-analyzes, once when accident has already happen, thus studying
the human error (Reason 1990). On the other hand, there are studies that are
concerned with the assessment of the risk, specifically the possibility of human
erroneous actions, which is known as the human reliability assessment (Hollangel,
1997). The latter can be assumed as the milestone of the cognitive ergonomics, since
it is focused on how the workers think, rather than how they act, i.e. how workers
maintain control over their work, since if the control fails, then system enters into a
state of loss control that could further lead to unwanted dangerous situations

(Hollangel, 1997).

Another approach used in cognitive ergonomics is cognitive task analysis (CTA). CTA
represents the extension of traditional task analysis techniques, with the aim to
assess information about the knowledge, thought processes and goal structures that
underlie overt task performance (Chipman et al., 2000). CTA methods mainly focus
on describing and representing the cognitive elements that underlie goal generation,
decision making, judgments, etc. In its essence, CTA uses a variety of interview and
observation strategies to capture a description of the knowledge that experts use to
perform complex tasks (Clark et al., 2008). As such, these methods are usually
unreliable, the analyses are usually carried in the initial phase of process design (off-

line), and there is no possibility for the real-time applications of such methodologies.

2.1.4 Psychophysiology and Neuroergonomics Domain

The major drawbacks of the beforehand mentioned HF/E domains is that all the

analyses of the workers’ cognitive state are qualitative and they utilize the overt

performance measurements, which are usually conducted in post hoc analysis. In

order to overcome these drawbacks and to provide objective measures of the workers
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cognitive state the psychophysiological methods, which were initially used solely in
the medical field, were recognized for usage in HF/E studies (Stanton, 2004).
Andreassi (2013) proposed one of the definitions of psychophysiology:
“Psychophysiology is defined as the study of relation between psychological
manipulation and resulting psychophysiological responses, measured in the living

organisms, to promote understanding of the mental and bodily processes”.

Psychophysiological methods are divided into the ones that record the activity of
autonomic nervous system (ANS) and the ones that are able to record the activity of
the central nervous system (CNS). The former group consist of measurement of
galvanic skin response (GSR), heart rate variability (HRV), etc. The latter mainly
consists of neuroimaging methods, such as electroencephalography (EEG), functional
magnetic resonance (fMRI), etc. The main difference between ANS and CNS is that
the actions of the ANS are not under direct voluntary control of humans (Janig, 1989),
while the CNS is related to behavior and thus it can be related to the voluntary control

of humans (Cacioppo et al, 2007).

The overall goal of applying psychophysiological methods in HF/E studies is to
improve the design of a system with regard to system effectiveness, as well to workers’
well-being (Trimel et al., 2009). The advantages of psychophysiological methods, in
comparison to previously mentioned HF/E domains are twofold: they are objective
and they can be acquired and processed in real time (Trimmel et al., 2009).
Additionally, the psychophysiological measurements enables the detection of covert
reactions to task environments, which are not possible to observe with the overt
performance measurements by HF/E professionals (Parasuraman, 2003), making
more holistic evaluations of particular design environments possible (Trimmel and

Poelzl 2006).

Recently, a novel path in ergonomics emerged, which is mainly concerned with
applying psychophysiological measurements for observation of the CNS activity
during the regular work operations, i.e. which is interested in how brain carries out
everyday tasks in complex environments (Mehta and Parasuraman, 2013a). This
novel direction was defined as neuroergonomics (Parasuraman, 2003). The benefits

of neuroergonomics methods is that they provide insights in the brain functioning
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and not only in the physiological response of the ANS. Thus, it provides the possibility

for direct linking of the brain dynamics to the behavioral responses of the workers.

The present dissertation mainly focuses on neuroergonomics studies, by utilizing
wireless EEG technology for investigation of brain dynamics during simulated work.
Further, the multimodal recording of brain dynamics and psychophysiological
measurements was performed for better understanding of relationship between ANS
and CNS activity. Finally, the motion capture sensors were also applied, mainly in
order to relate the behavioral modalities with the physiological signals. All of these

will be discussed in detail in further chapters.
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3.Neuroergonomics

Parasuraman (2003) pinpointed the importance of studying the human brain
processes while executing everyday complex tasks in naturalistic environments,
through the new direction in human factors and ergonomics (HF/E) research. The
‘official’ proclamation of Neuroergonomics was in the year of 2003, when Taylor &
Francis group published a special issue of ‘Theoretical Issues in Ergonomics Science’
that was entirely devoted to neuroergonomics and where the majority of articles were
mainly discussing the newly emerged science sub-discipline of ergonomics. Although
Parasuraman and Wilson (2008) modestly stated that neuroergonomics should not
be thought of as revolutionary, but rather as another step in HFE research, the
growing body of neuroergonomics research refuted this statement. In fact, ever
advancing technology has facilitated neuroergonomics research and nowadays, only
twelve years from its inception, it has become one of the principal directions in HFE

research.

Neuroergonomics is defined as the study of the human brain in relation to
performance at work and in other naturalistic settings (Parasuraman 2003;
Parasuraman and Rizzo 2006; Parasuraman 2011; Mehta and Parasuraman 2013a).
It is interdisciplinary area of research that integrates scientific disciplines of HF/E
and neuroscience while attempting to exploit the benefits of each (Parasuraman and
Rizzo 2006). The goal of neuroergonomics is not solely to study brain dynamics, which
is in the field of neuroscience, but to put the brain dynamics in the context of human
cognition and behavior at work and other everyday settings (Parasuraman and Rizzo,
20006). Moreover, since the human brain interacts with the environment over physical
body, neuroergonomics is correspondingly concerned with the neural basis of
physical performance, e.g. moving and grasping objects, etc. (Parasuraman and

Rizzo, 20006).

Traditionally, ergonomics research and practice has not considered neuroscience or
findings concerning brain mechanisms that underlies human perceptual, cognitive,
affective and motor processes (Parasuraman, 2003). This is not surprising, since the
HF/E has its roots in a psychology of 1940s that was firmly in the behaviorist camp
(Parasuraman, 2003), where researchers were using solely the simplified stimulus-
response (S-R) approach, but also due to slow shifts from behavioral to cognitive
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approach in psychology itself. More recently, however the ergonomics was influenced
by the cognitive psychology, but still the neuroscience continued to be ignored
(Parasuraman, 2003). One of the main reasons for this is that primary interest of
ergonomics is assessment of broad psychological constructs and high-level cognitive
functions, which are still not likely to be effectively mapped in the neuronal network
of brain functioning (Sarter and Sarter, 2003). For that reason, the focus on ‘large’
cognitive constructs still represents a major challenge for the neuroergonomics
(Sarter and Sarter, 2003).

Nevertheless, in the classic ergonomics perspective cognitive functions are mainly
described through the correlation of various theoretical constructs that describe
cognitive context (Hanckook and Szalma, 2003) and which are further used as
elements for complementing the process of research and design (Fafrowicz and
Marek, 2007). On the other hand, the neuroergonomics postulate the elimination of
such theoretical constructs from research and design process and it focuses on
examining the role of neural systems that are involved in execution of the work tasks,
i.e. the neuroergonomics aims in investigating the limits of the efficiency of neural
system in executing particular work task (Farowicz and Marek, 2007). As argued in
work of Fafrowicz and Marek (2007), in the traditional ergonomics, mental, cognitive
and emotional functions are observed through theoretical contstructs, which are
defined by the psychologists, and the research is directed towards correlation
between behavioral and hypothetic cognitive processes. Whereas from
neuroergonomics perspective, the functions of covert neural structures are the main
subjects of the research and they are becoming the point of departure (Fafrowicz and
Marek 2007). Figure 3-1 graphically depicts the main differences between traditional

ergonomics and neuroergonomics approach.

While trying to link brain dynamics with the ever advancing technology at work,
neuroergonomics has two key goals: (1) to utilize present and evolving knowledge of
human performance and brain function in order to design technologies and optimize
work environments, with the ultimate aim of creation of the safer work conditions;
and (2) to yield necessary knowledge of brain function in relation to human
performance in naturalistic workplace environments (Parasuraman, 2003). In order
to achieve these goals, neuroergonomics provides the possibility to enrich the HF/E

research by providing precise analytical parameters of brain functioning and behavior
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in naturalistic settings (Parasuraman 2011; Mehta and Parasuraman 2013a), rather
than evaluating human performance solely through wunreliable subjective
measurements (Parasuraman 2003; Parasuraman and Rizzo 2006). Ultimately,
understanding brain processes in naturalistic environments can lead to improvement
of existing industrial processes design and to creation of safer and more efficient
working conditions (Parasuraman 2003), consequently improving the operators’

overall wellbeing.

Psycholgglcal Behavioral Behavioral parameters which are
r?n_ logical Ce a\,|'|otra in functional relationshipwith the activity of
neurophysiologica orrelates neural structures and networks
correlates
Y Y
THEORETICAL CONSTRUCTS The Parameters
describing correlation betweer of neural structures and
cognitive processess that are networks involved in
active in task execution task execution
‘, |
Research/Design Research/Design
A A
Requirements imposed by Requirements imposed by
technology and work Standards technology and work Standards

Figure 3-1: Traditional ergonomics approach (left image); and neuroergonomics approach to
research and design in ergonomics (right image — Figure adopted from: Fafrowicz and Marek,

2007)

So far, neuroergonomics had significant success in evaluating brain activity in its
interaction with automated systems, through the studies of mental workload, dual-
task performance (Ayaz et al., 2013) and operators’ vigilance (Warm et al., 2008).
Additionally, it went a step further with the development of state-of-the-art
neuroadaptive systems facilitating the mutual interaction between an automated
system and operators, in the sense that both human and the system can initiate the
change in the level of automation when needed (Scerbo 2006; Mehta and

Parasuraman 2013a). On the one hand this trend is understandable as industry, for
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over several decades, has tried to reach the ‘ights-out manufacturing’ concept
(Tompkins et al., 2010), i.e. completely automated factories, which can operate
without the direct presence of human operators in the production processes. In that
case, human supervisory control of automated systems becomes essential (Sheridan
and Parasuraman 2005), as human operators would be solely responsible for
controlling the automated production systems (Warm et al., 2008). Although
automation is becoming ubiquitous in industry and everyday life (Parasuraman et
al., 2008), the lights-out’ concept is still rather futuristic and there is still a need for
human manual operations in the production processes. This is especially notable in
assembly tasks and processes where costs, related to process automation, are

generally not justifiable (Tang et al., 2003).

For these reasons, it is evident that neuroergonomics studies should pay additional
attention to more traditional workplaces, through investigation of concurrent
physical and cognitive work. This approach has received far less attention in
neuroergonomic studies (for review see Mehta and Parasuraman 2013a). For
example, in the car manufacturing industries the majority of processes are
automated, however human operators play a crucial role in the final car cockpit and
interior assembly, i.e. final assembly (Michalos et al., 2010a). Typically, manual
assembly tasks require a large number of repetitions and are monotonous in nature,
thus leading to hypo-vigilance of operators (Spath et al., 2012). In turn, operators’
have difficulty in sustaining the desired level of attention during the task, and
therefore, the risk of work-related injuries, material damage or even accidents is
increased (Kletz, 2001). Therefore, employing existing neuroimaging techniques to
understand the way the brain processes various stimuli in this class of tasks could
be beneficial, as the task design could be optimized in such a way as to obtain and
maintain sufficient operator attention, thereby avoiding possibly hazardous

situations.
3.1 Neuroimaging Techniques in Neuroergonomics

An extensive review of neuroimaging techniques applicable to neuroergonomics
research has been recently published by Mehta and Parasuraman (2013a).
Neuroimaging techniques can be divided into two distinct groups according to their

recording mechanisms (Figure 3-2): one that exploits techniques for indirect
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metabolic indicators of neural activity (hemodynamic techniques), and the one that
employs direct measurements of brain activity based on electromagnetic techniques
(Mehta and Parasuraman 2013a). The former consists of techniques such as
functional magnetic resonance imaging (fMRI), positron emission topography (PET)
and functional near infrared spectroscopy (fNIRS). On the other hand,
Electroencephalography (EEG) and therefrom derived event related potentials (ERPs)
belong to the neuroimaging techniques that directly measure brain activity (Gramann

et al., 2011; Mehta and Parasuraman 2013a).
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Figure 3-2: A comparison of neuroimaging methods utilized in neuroergonomics studies.
Methods for direct observation of brain dynamics are depicted with red color, while the ones
for indirect observation of brain processes (Blue). EEG — electroencephalography; ERP — Event-
Related Potential (ERP); MEG — Magnetoencephalography; fNIRS — functional Near Infrared
Spectroscopy; PET — Positron Emission Tomography; fMRI — functional Magnetic Resonance
Imaging; DTI - Diffusion Tensor Imaging (Figure adopted from Mehta and Parasuraman,

2013a).

The main distinction between neuroergonomics and neuroscience is that former aims
in investigating the brain functioning in relation to work and therefore when
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evaluating which neuroimaging method should be used for neuroergonomics study
following three important criteria should be considered (Mehta and Parasuraman

2013a):

(1) - Temporal resolution,
(2) - Spatial resolution, and

(3) - The degree of mobility

The temporal and spatial resolutions presents the ability of the recording device to
discriminate between two data points in time and space, respectively (Slavin and
Bluemke, 2005), while the degree of mobility relates to the dimensions of the
recording equipment and its usability for usage in naturalistic environments.
Graphical representation of comparison of neuroimaging methods that are mostly
utilized for neuroergonomics studies is depicted on Figure 2-2 and they are

summarized in table 3-1 (Mehta and Parasuraman, 2013a).

3.2 Hemodynamic Neuroimaging Techniques Applicable To

Neuroergonomics

3.2.1 Functional Magnetic Resonance Imaging (fMRI) and Positron

Emission Tomography (PET)

fMRI and PET belong to cerebral hemodynamic techniques that can provide valuable
information on source locations of diverse neural activation patterns, which are
associated with cognitive, motor and affective functions (Mehta and Parasuraman,
2013a). fMRI is capable of noninvasive assessment of relative changes in cerebral
oxygenation while a person is engaged in cognitive task (Parasuraman and Rizzo,
20006). A brief description of working principle of fMRI was provided by Calhoun
(2006) and here it will be summarized. fMRI relies on the fact that oxygenated blood
has different magnetic properties than deoxygenated blood or surrounding tissues.
This disparity of blood oxygenation causes the variation of magnetic resonance signal.
Once the specific brain region increases in neural activity a small decrease of local
oxygenated small pool, following which the cerebrovascular system responds by
increasing the flow of oxygenated blood into that region for returning the oxygenated

blood level back to normal. At this point however, the supply of oxygenated blood
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exceeds the neural demand and therefore, the ratio of oxygenated to deoxygenated
blood is altered. fMRI is able to acquire this blood oxygen level-dependent (BOLD)
signal over the brain regions. Finally, the BOLD signal can be used to associate neural
responses to performance of a cognitive tasks, which is measured and compared to
baseline of resting state, or to another cognitive task that differs in cognitive task
demand (Calhoun, 2006). On the other hand, PET uses injected radioactive tracers
in order to measure the dependence of the blood flow related to neural response to

stimuli (Mehta and Parasuraman, 2013a).

Table 3-1: List of neuroimaging techniques applicable to Neuroergonomics (Adopted from

Mehta and Parasuraman 2013)

Method Abbreviation  Measures/ Mobility Cost Spatial Temporal
Stimulates Resolution Resolution
Magnetic Resonance MRI Grey matter volume
None High High NA
Imaging
PET Blood flow and
Positron Emission
Oxygen consumption None High High NA
Tomography
of glucose
DTI White matter
Diffusion Tensor Imaging None High High NA
integrity
functional Magnetic fMRI Relative Blood
None High High Low
Resonance Imaging Oxygenation
functional Near Infrared fNIRS Oxyhemoglobin and
X High Low Moderate Low
Spectroscopy deoxyhemoglobin
Transcranial Doppler TCDS Cerebral blood flow
. Moderate Low Low Low
Sonography velocity
EEG Summated post-
Electroencephalography synaptic electrical High Low Low High
activity
ERP Stimulus or
Event Related Potential response-related High Low Low High
electrical activity
Transcranial Magnetic TMS Brain Activation or
Low Moderate High High
Stimulation Inhibition
Transcranial Direct tDCS Brain Activation or
High Very low Low Low
Current Stimulation Inhibition

Both PET and fMRI possess very high spatial resolution, which allows scientists to
allocate which brain regions are activated in particular cognitive tasks (Mijovi¢ et al.,
2012). Thus, they were successfully applied and have had important impact in
advancing knowledge on brain functions and mechanisms during relatively simple
and static cognitive and motor tasks (Mehta and Parasuraman, 2013a; Gramann et

al., 2014).
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PET and fMRI were already successfully applied for investigating the brain dynamics
during driving (e.g. Calhoun, 2006), in aviation sector (e.g. Cause et al., 2013), etc.
However, important limitations of these methodologies is that have poor temporal
resolution, mainly because hemodynamic response is a slow signal and each echo-
planar image is acquired every few seconds (Mijovi¢c et al., 2012). One of the
possibilities to increase spatio-temporal resolution of such a recordings,
neuroscience research started to focus on multimodal approaches. For that aim,
recently a combination of EEG-fMRI modalities has been successfully integrated
(Mijovic et al., 2012; Mijovi¢ et al., 2013). Although this intervention increased the
precision of such systems, one of the limitations is that precise signal acquisition
requires that participants are lying in the supine position in noisy scanners (Mehta
and Parasuraman, 2013a). The first problem of such a recording is that
hemodynamics is altered in lying compared to the standing position (Raz et al., 2005).
Additionally, the recording equipment is of big dimensions and therefore the mobility
of these systems is severely limited, which restricts synchronized brain-body
measurements in naturalistic conditions (Maekig et al., 2009). Finally, the
assumption that brain activity, which is measured in static position and inside the
noisy scanners, reflects a general principle of brain dynamics during cognitive

processes is rather inappropriate (Gramann et al., 2011).

3.2.2 Functional Near infrared Spectroscopy (fNIRS)

For above mentioned reasons, scientists adopted neuroimaging methods that offers
better mobility features, for the aim of investigating the brain dynamics in everyday
settings (Mehta and Parasuraman 2013a; Gramann 2011; Gramann 2014). From the
group of techniques that measure brain hemodynamics, fNIRS remains the single
convenient technique for the neuroergonomics research in naturalistic setting due to
being lightweight and wearable (Ayaz et al., 2010; Ayaz et al., 2012; Mehta and

Parasuraman 2013Db).

fNIRS is relatively novel methodology that is used in functional brain-imaging studies.
fNIRS works on similar principle as fMRI and PET, but it possess lower spatial
resolution than these two methods (Mehta and Parasuraman, 2013b). It is
noninvasive neuroimaging technique, which utilizes specific light wavelengths that

are introduced through scalp surface in order to enable continuous measurement of
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alteration in the relative ratios of deoxygenated to oxygenated hemoglobin in the
capillary beds during brain activity (Izzetoglu et al., 2005). Oxygenated and
deoxygenated blood can be contrasted by their optical absorption properties, which
allows fNIRS to detect the level of these parameters in response to brain activity. The
advantage of fNIRS over PET and fMRI is that it is small sensor that can be mounted
on participants’ head (Gramann et al., 2011). Thus, it can be utilized for both static
and dynamic motor movements, without creating the undesired movement artifacts

(Izzetoglu et al., 2005; Perrey, 2008; Gramann et al., 2011).

fNIRS has so far been successfully applied for objective measurement of mental
workload within air-traffic controllers (Ayaz et al., 2011; Ayaz et al., 2012), for spatial
orientation (Ayaz et al., 2011), studying the mental fatigue (Mehta and Parasuraman,
2013b), attention (Li et al., 2009), dual working memory skill (Ayaz, 2013), and other
neuroergonomics studies. However, one of the limitations of the f{NIRS studies it that
their focus is mainly on prefrontal cortex, which raises the question whether
investigation of only one brain region can provide enough insight on overall brain
dynamics (Derosiere et al., 2013). Another important limitation for application of
fNIRS in dynamic environments is that hemoglobin concentration dynamics are slow
and therefore it limits the temporal resolution of fNIRS in the order of several seconds
(Gramann et al., 2011; Irani et al., 2007). The former limitation limits the usage of
the fNIRS for studying the brain dynamics of goal-directed movements and fast
embodied cognitive processes, which are initiated in fractions of seconds (Gramann

et al., 2011).

As stated by Gramann et al. (2011), for investigation of sub-second brain processes
the neuroimaging technique has to have very good temporal resolution based on the
direct investigation of brain processes. Two widely employed methods are EEG and
MEG. However, the MEG is still contained solely to laboratory conditions due to the
size of the recording equipment (Mehta and Parasuraman, 2013a), thus leaving EEG
as unique method for investigating brain dynamics that follows participants’ free

movements (Gramann et al., 2011).
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3.3 Electroencephalography (EEG)

German scientist Hans Bergner introduced the first human EEG signal in 1924
(Berger, 1929; Sanei and Chambers, 2013). Berger placed one electrode over forehead
and one over the occipital cortex and has recorded the rhythmic activity at
approximately 10Hz, which is known today as the alpha waves (Pizzagalli, 2007).
Berger further proposed that the periodic fluctuations of the human EEG may be
related to mental processes, e.g. arousal, memory, etc. (Pizzagalli, 2007). Ever since
the EEG has been widely used for measuring the electrical brain activity and it has
been recognized as the mostly used tool in clinical and experimental neuroimaging,

but also in neuroergonomics studies (Gevins and Smith, 2006).

3.3.1 Electrical brain activity

In this section, a brief background on electrical brain activity will be provided, mainly
based on the following previous published works (Pizzagalli, 2007; De Vos, 2009;
Vanderperren, 2011; Sanei and Chambers, 2013).

A Neuron (Figure 3-3), which consists of a cell body, dendrites and an axon, is an
electrically excitable cell that processes and transmits information through electrical
and chemical signals. Neurons are electrically polarized in a way that their interior is
negatively charged with respect to the outside cell. The main reason for this is
unequal distribution of sodium (Na+), potassium (K+), and negatively charged ion
chlorine (Cl-) across the cell membrane. This potential difference called the resting
potential and it has typical values around -70mV. When cells communicate with each
other, they release chemicals known as neurotransmitters, at the synaptic terminals.
The neurotransmitter travel from presynaptic to postsynaptic region that disturbs
the resting potential, or a so called postsynaptic potential (PSP), by several microvolts
and in duration of approximately 10 ms. Since every neuron possess many synapses
that are connecting to numerous other neurons, the actual potential over a cell
membrane is given by spatial and/or temporal summation of the PSPs. At this stage,
both a depolarization (a decrease in negativity) and hyperpolarization (an increase in
negativity) are possible. Depolarization of neuronal cell beyond critical level
(threshold) generates an action potential (AP) that propagates along the axon. Once

it arrives to the synapses, the AP can release neurotransmitters in order to
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communicate with the next set of neurons. However, since the hyperpolarization is
also possible, there are two distinct types of the PSPs: ones that depolarize and
eventually lead to generation of AP (also called excitatory PSPs - EPSPs); and the ones
that lead to suppression of Aps (known as inhibitory PSPs - IPSPs).

Dendrite

Axon Terminal

Node of

Ranvier
Cell Body

Schwann Cell

Myelin
Nucleus

Figure 3-3. The structure of neuron (Adopted from:
https://en.wikipedia.org/ wiki/ Soma_(biology) )

3.3.2 EEG signals Measurement

EEG signal measures the generation of currents that flow during synaptic excitations
of the dendrites of numerous pyramidal neurons in the cerebral cortex (Sanei and
Chambers, 2013), i.e. EEG measures the post-synaptic activity of the human brain.
Once the neurons are activated, the synaptic currents are produced within dendrites,
which further generates a magnetic field measurable with the electromyogram (EMG),
while the secondary electrical field over scalp is measurable with the EEG systems
(Sanei and Chambers, 2013). In other words, the neurons possess specific electrical
properties that cause their activity to produce electrical field (Vanderperren, 2011).

These electrical fields may be recorded from a short distances from the source (local
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field potentials - LFPs), from a large distance from the source (electrocorticografy -

ECoG), or at the subjects scalp (EEG).

The EEG measures the electrical communication between neurons as a function of
time (De Vos, 2009). However, the occurring potential changes can only be detected
if many neurons synchronously depolarize or hyperpolarize. Therefore, it is believed
that the synchronous firing of many vertically oriented large pyramidal cells in the
cortex specifically generates the EEG, since these neurons are aligned and amplify
each other’s extracellular fields and the currents generated by these neurons
summate in the extracellular space (De Vos, 2009; Vanderperren, 2011). Although
the currents are attenuated through meningeal coverings, spinal fluind, skull and
scalp, they can still be detected since the sum of the simultaneously active neuron’s
potential is between 10 and 150 uV (De Vos, 2009). These signals can be measured
by placing at least two electrodes on the scalp, which constitutes the EEG signal
measurements (Figure 3-4; De Vos, 2009; Vanderperren 2011; Sanei and Chambers,
2013).

( -80

Electrode 1 — ==

- -SAO ?

R AR

-30 ¥

Electrode 2

Figure 3-4: The sum of electrical brain potential recorded from two-electrodes placed on the

scalp (Addopted from De Vos, 2009)

Berger introduced the two-electrode system for measuring the EEG activity, however
nowadays, these systems improved and there is a recommendation that EEG should
be measured with at least 24-channel EEG (Nuwer et al., 1998). Since the localization

of the specific brain activity is of great importance, there is a general recommendation
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that the recording electrodes should be placed on well-defined positions on the
human scalp, by following the international 10-20 system (Nuwer et al., 1998). The
10-20 system recommends electrode placement based on intersections at 10 or 20%
intervals of distances between specific anatomic landmarks on the head (Figure 3-5).
According to this system, the electrode positions are specified with a combination of
two or three letters and/or digits. The first letter normally corresponds to the specific
scalp region at which the specific electrode is located. As such, capital letter F
indicates electrodes on the frontal lobe, T on the temporal lobe, O on the occipital
lobe, P on the parietal. The letter C indicates the electrodes on the central line. For
most electrodes, a second letter or a digit is added to this letter, e.g. FP represents a
fronto-parietal region, etc. In addition, a letter Z is added for all electrodes on the
midline and odd and even numbers for electrodes on the left and right hemisphere,
respectively. For setting a larger number of electrodes, electrodes are equidistantly
placed in between the above electrodes and the same naming approach is preserved

(Vanderperren, 2011).
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Figure 3-5: Graphical representation of the international 10-20 system for the electrode
placements in EEG recordings, seen from above (Image A) and side view (Inage B). Adopted

from (Malmivuo, J., and Plonsey, 1995)

In order to measure the potential differences between electrode sites on the scalp,

one or several referenced electrodes needs to be used (De Vos, 2009; Vanderperren
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2011; Sanei and Chambers, 2013). Mostly used reference systems are bipolar
reference, the Laplacian derivation, the average reference and the linked-ears
reference (De Vos, 2009). When using the average reference, the potentials on all
recording sites are recorded with the average value of all electrodes. In linked-ears
reference, the EEG signal is recorded with respect to the average potential on ear
lobes. Both of these references are good for visualizing the widespread coherent
waveforms, since these waveforms occur with similar amplitude and phase (De Vos,
2009). When using bipolar and Laplacian montage, the EEG signals are obtained by
subtracting neighboring electrode signals and they are mainly used for viewing highly
localized activity over specific scalp area, since the usage of these methods filters out

the widespread waveforms (De Vos, 2009).

3.3.3 Brain Rhythms

In the healthy adults, the amplitudes and frequencies of the brain rhythms change
depending on the person’s cognitive state, e.g. arousal, vigilance, sleep, etc. (Sanei
and Chambers, 2013). The brain rhythms are generally divided in frequency bands
and are depicted on the Figure 3-6 (Sanei and Chambers, 2013): 6 (delta: < 4 Hz), t
(theta: 4-7.5 Hz), a (alpha: 8-12),  (beta: 13-35 Hz) and y (gamma: >35 Hz).
Depending on the literature, the spans of the frequency bands can vary. However,
this is not surprising since these bands are person specific, but also depends of the
age. For that reason Klimesch (1999) proposed that for each subject, the frequency
bands should be adjusted for alpha and theta windows, before further analysis.
Nevertheless, generally, the above mentioned values are used, with a certain

ambiguity, in variety of EEG studies.

Delta waves are mainly observable in the deep sleep, however they could be
observable also in the wakeful state (Sanei and Chambers, 2013). Theta waves are
observable in the wakeful state and they can represent the consciousness slips
towards drowsiness of a person (Sanei and Chambers, 2013). Moreover, theta waves
are observed when a person is fallen into a light sleep (De Vos, 2009). Alpha waves
indicate both a relaxed and awareness state, but without attention or concentration
(Sanei and Chambers, 2013), i.e. they show that a person is awake, but it is not
actively processing information (De Vos, 2009). Thus, the alpha waves are commonly

observed when a person is relaxed but inattentive (De Vos, 2009). Beta waves are the
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most prominent in the wake state when person is engaged in active thinking and
solving complex problems. Moreover, beta is observable during attentive states and
when a person is focused on the task (Sanei and Chambers, 2013). Gamma wave,
also sometimes referred to as fast beta waves, are generally rare and rarely studied
waves, and can be used for detection of certain brain functioning disorders (Sanei

and Chambers, 2013).

Delta
Theta
0.0 0.2 0.4 0.6 0.8 1.0
Alpha
0.0 0.2 0.4 0.6 0.8 1.0
Beta |
0.0 5.2 0.4 0.6 0.8 1.0

Figure 3-6: Graphical representation of the specific brain rhythm frequencies (Adopted from
http://econtact.ca/ 14 _2/ortiz_biofeedback.html)

3.3.3.1 Engagement Index (EI)

When assessing the cognitive state from EEG frequency domains one could use the

basic index, which consists of solely calculating power ratios for each of the frequency
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bands, or the ratio index that is derived from the ratio between power of frequency
bands (Cheng and Hsu, 2011). Engagement index (EI) is a ratio index, derived from
the EEG frequency bands and it represents how much is person cognitively engaged
in the task, reflecting changes in alertness (Pope et al., 1995; Prinzel et al., 2000;
Jacko, 2012; Laure et al., 2015). As mentioned in previous chapter, the low frequency
waves are usually high in amplitude and are notable in the state of rest, relaxation,
sleepiness, low alertness etc. On the other hand, the high frequency and low
amplitude waves are reflecting the alert state, state of wakefulness, state of task
engagement, etc. The EI represents the ratio between the high frequency waves (),
and the summation of the low frequency waves (a+0), i.e. EI = /(a+0). Therefore,
higher EI indicate the higher engagement of the person to the task, while the low
values of EI indicate that person is not actively engaged with some aspect of the
environment during the task (Jacko, 2012). An important notion is that one should
be careful when using the EEG frequency analysis, since the continuous EEG signal
can be contaminated with the recording artifacts, such as e.g. muscle artefacts (
prozafir and Mutulu, 2012). For that reason, it is important to ensure that all the
artefacts, which are unrelated to brain dynamics, need to be removed from the signal

prior to the EI calculation.

3.3.4 Event-related Potentials (ERPs)

Event-related Potentials (ERPs) can be recorded from the human scalp and extracted
from the continuous ongoing EEG signal (Picton et al., 2000). ERPs emerged from the
fact that the EEG signal in its raw form is a rough measure of the brain activity and
in the initial years of EEG recordings it was very difficult to use it for assessment of
specific neural processes (Luck, 2014). However, the EEG carries the neural
responses that are associated with specific sensory, cognitive and motor events, and
these responses can be extracted from the ongoing EEG by means of simple averaging
and other more sophisticated techniques (Luck, 2014). These methods are necessary,
since the ERPs are small in voltage (1-30 uV) relative to the ongoing EEG activity and
EEG recording artifacts (Sanei and Chambers, 2013). Thus, the averaging techniques
are used to increase signal-to-noise ratio (SNR), by canceling unrelated brain
activities and recording artefacts (Luck, 2014). The name Event-related potentials
denotes that ERPs are EEG voltage fluctuations that are associated in time with some
physical or mental occurrence, i.e. with specific event (Picton et al., 2000; Luck,
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2014). Apart from using ERPs for assessing the patients’ various clinical conditions,
over the past 40 years ERPs were recorded from healthy individuals for assessing
various covert cognitive mechanisms, e.g. the mechanisms of attention (Luck et al.,

2000).

In order to extract time-locked ERPs from the continuous EEG signal, the
participants must be presented with stimulus, which can be auditory, visual, tactile,
etc. Figure 3-7 depicts the segment of continuous EEG signal and time-locked periods
of signal presentations and the duration of ERP waveforms, which can be used for
further analysis (Luck et al., 2000). As can be seen on the Figure 3-7, the segment of
EEG following each stimulus (or each response) is extracted from the EEG, and these
segments are then lined up in time and averaged obtaining grand average (GA) ERP
(as depicted on the lower-right corner of the Figure 3-7). As previously mentioned,
the averaging suppress any brain activity that is unrelated to the stimulus to zero
(assuming a large number of trials), and any brain activity that is consistently time-

locked to the stimulus will remain in the average (Luck et al., 2000).
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Figure 3-7: The ERP extraction from the ongoing EEG. Image a: The participant is presented
with the stimuli (1...N), while the ERP is being recorded; Image b: In order to isolate the ERP
from the continuous EEG signal, the time-locked EEG segments following each stimulus are

extracted and averaged with the aim of obtaining the GA ERP (Adopted from Luck, 2014).

The resulting GA ERP waveform consists of several positive and negative deflections
that are called ‘peaks,” ‘waves,’ or ‘components,’ (Luck, 2014). The ERP components
are typically named in the standardized fashion, in a way that first there is a capital
letter P or N, indicating positive or negative going wave, followed by the number,
which indicate the timing of the peak in milliseconds (Picton et al., 2000; Luck 2014).
As such, e.g. P300 component presents the positive going wave that occurs around
300 ms after the time-stamp of the presented stimuli. The sequence of components
that are following a stimulus usually reflects the sequences of the neural processes
that are triggered by the stimulus (Luck, 2014). The distinction between early and
late components is that the former represents the early sensory processing, while the
latter are representative of decision and response-related processing (Luck, 2014).

Thus, the ERPs span a continuum between the exogenous potentials (i.e. obligatory
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responses, which are influenced by the physical characteristics of the eliciting event)
and the endogenous potentials (i.e. related to the information processing in the brain

that may or may not be invoked by the eliciting event; Picton et al [2000]).

Since ERPs are derived from the EEG, the spatial resolution limited mainly by the
numbers of the recording sites of the electrodes. However, the temporal resolution
can be increased by increasing the recording channels. This can allow the estimation
the intracerebral locations of these cerebral processes (Luck, 2014). Another
possibility for increase of temporal resolution is through multimodal EEG-fMRI
measurements (Mijovi¢ et al., 2012; Mijovi¢ et al., 2013). Nevertheless, information
provided by ERPs may be used in many different research programs, with vide
application area, ranging from understanding how the brain implements the mind to
making specific analyzes in medicine, psychology (Luck, 2014), but also for analyzing
the brain dynamics in naturalistic environments (Debener, 2012; De Vos, 2014a).
Moreover, the ERPs were also successfully applied in brain-computer interfacing
(BCI), both in laboratory conditions for the e.g. P300 speller (De Vos et al., 2014b), or

in naturalistic environments (De Vos et al., 2014a).

The amplitude and latency of the ERP peaks can be used to measure the time course
of cognitive processing, and the distribution of voltage over the scalp can be used to
estimate the neuroanatomical loci of these processes (Luck, 2000). Moreover, since
the temporal resolution of ERPs is in the order of milliseconds, they can be used to
measure the when brain processing activities actually take place and according to
Luck et al. (2014) ERPs are considered to be the “Reaction time of the 21st century”,
since the behavioral reaction time (RT) and performance based measurement
measurements are unable to provide the insights of what is happening between the

stimulus presentation and the ones response (Luck, 2000; Parasuraman 2003).

In order to successfully apply ERP study, the experimental paradigm should be
specifically designed to elicit the desired cognitive processes (Picton, 2000). The most
commonly used paradigm is the, so called oddball paradigm in which the improbable
target stimulus should be detected in the train of the standard stimuli (Picton, 2000;
Luck, 2014). The amplitudes and latencies of the ERPs elicited over both the target
and standard condition are then calculated separately and compared, in order to

investigate how the brain discriminates stimulus and evaluates the probability
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(Picton, 2000; Luck, 2014). The oddball task paradigms usually elicit the P300 ERP
component of higher amplitude magnitude over target stimuli, compared to standard
ones (Polich, 2007; De Vos et al., 2014a) and it usually reflect the depth of cognitive
processing, e.g. memory processing, attention processing, etc. (Polich, 2007; Luck

2014; De Vos et al., 2014a).

3.3.4.1 P300 ERP Component

The P300 component of the ERPs represents the positive deflection of the ERP
waveform that occurs around 300 ms after the stimulus presentation and it is the
most prominent over central and centro-parietal scalp sites (Picton, 1992). It is also
commonly called the P3 component, since it is the third major positive peak in the
ERP waveform (Picton, 1992). It was discovered in 1965 (Sutton et al., 1965; Walter
et al., 1965) and it was reported as the late positive ERP wave that is evoked by
meaningful, task relative stimuli (Picton, 1992). Ever since, the P3 encouraged the

use of ERPs for assessment of the neural basis of cognition (Polich, 2007).

Although the early studies were concerned solely with functional analysis of the P3
component (as related to stimulus probability), nowadays it is widely accepted that
the P3 component is actually reflecting information processing, when brain
mechanisms are engaged in attention and memory processing (Picton, 1992;
Johnson, 1993; Polich, 2007). In other words, the P3 component is often used to
identify the depth of cognitive information processing, being strongly related to the
attention level (De Vos et al., 2014a; Johnson 1988; Polich 2007). It is usually
considered that P3 component is not influenced by the physical attributes of the
stimuli (Grey et al., 2004; Murata et al., 2005). However, the recent study
demonstrated that if P300 is indeed equivalent to centro-parietal positivity (CPP) in
the gradual target detection task, physical attributes could influence the P3
component (O’Connell et al., 2012).

Although, the P3 component was studied as a single waveform, recent studies
support the notion that there are generally two distinct P3 subcomponents, namely
P3a and P3b subcomponents, depending on the target/standard discrimination
difficulty (Polich, 2007). Generally, the P3a subcomponent is stimulus driven and it
reflect frontal attention mechanisms during the task, while the P3b component has

more temporal-parietal scalp distribution and it reflects attention mechanisms,
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which are related to subsequent memory processing (Polich, 2007). The main
functional distinction between these two components is that P3a is related to low-
level attentional processing and it reflects the exogenous attention processing
mechanisms (Daffner et al., 2000). On the other hand, P3b subcomponent is related
to high-level attention processing and processing of the endogenous aspects of
stimuli, context-updating information (working memory) and memory storage (Polich,
2007). The latency of P3a and P3b can vary depending on the stimulus events which
elicit them, nature of task, and population of participants included in the study, etc.
(Polich, 2007). Although, P3a and P3b are mainly elicited separately, both
subcomponents can be elicited simultaneously, forming bifurcated P3 component,
which contains both subcomponents (Polich, 1988). The main cause of this is that
the ERP represents the summation of the electric potentials and thus, both

components could simultaneously, contributing to bifurcated P3 peak.
3.4 EEG applications in Neuroergonomics Studies

The application of the EEG systems for the measurements of the operators cognitive
state are dating even before the neuroergonomics was established as the science
discipline. For example back in 1990s, Parasaruman discussed on the application of
the ERP recordings for various HF/E problem areas and he argued that the majority
of previous research that was conducted on measurement of the mental workload
(Parasuraman, 1990). Shortly after, Gevins et al. (19995) also discussed on the benefits
of the EEG applications for the measurement of brain functions in operational
environments, and especially those positions that require sustained attention of the
workers. Further, Jung et al. (1997) demonstrated how the alertness, in the tasks
that require sustained attention, can be monitored in near real-time, using EEG
power spectra and they proposed that their system could be applied for non-invasive
measurement of the cognitive state of human operators in attention critical settings.
Following these research, and with the development of the technology, the EEG
received much more attention for estimating the operators’ cognitive states in the
operational environments, but also for the ergonomics task design (Parasuraman,
2003; Mehta and Parasuraman, 2013a). The application of EEG in neuroergonomics
studies covers both physical and cognitive work domains (Mehta and Parasuraman,

2013a).
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Regarding physical work, the EEG studies were mainly conducted on repetitive work,
mainly by utilizing EEG derived movement-related cortical potential (MRCP), but also
combining EEG and electromyography (EMG) signal modalities (Mehta and
Parasuraman, 2013a). The usage of the MRCP for physical work was encouraged by
the fact that MRCP provides valuable information regarding the role of cortical motor
commands on the control of voluntary muscle activations (Mehta and Parasuraman,
2013a). For example, it was found that MRCPs, from the supplementary motor area
and contralateral sensorimotor cortex, are highly correlated with the force generation
during elbow flection and associated muscle activities (Siemionov et al., 2000). In
another study it was found that extension and flection result from separate cortico-
spinal projections to the motor neurons, while thumb extensions resulted in lowered
EMG it also elicited greater MRCPs than flection movements (Yue et al., 2000). It was
emphasized that these findings may provide important information for understanding
the etiology of work-related MSDs, caused by repetitive work (Mehta and

Parasuraman, 2013a).

Regarding cognitive work, EEG was previously mainly used for studying of the
mental-workload, vigilance and mental fatigue, and neuroadaptive systems (Mehta
and Parasuraman, 2013a). Studying mental workload is important since if its values
are too high, or too low, human-system interaction can be compromised, which could
further lead to potentially hazardous situations (Mehta and Parasuraman, 2013a). It
was reported that EEG correlates of mental workload are highly sensitive to changes
in working memory load (Berka et al., 2007). Moreover, during problem solving and
analytical reasoning EEG indices of mental workload also increase (Berka et al.,
2007). Further, EEG was also proposed for the on-line detection of changes in mental
workload, with the aim of improving the operators’ performance (Kohlmorgen et al.,

2007).

EEG has been recognized to be powerful method for detecting mental fatigue of the
workers, but also to investigate the ability of operators’ to sustain attention over
prolonged period, i.e. vigilance (Jung et al., 1997; Boksem et al., 2005; Parasuraman
and Wilson, 2008; Marcora et al., 2009). Studies of vigilance are among the most
important, since the general trend in industry is to automate as much processes as
possible, both to reduce human error and to increase productivity (Sheridan, 1980).

This way, the automation changes the role of the operators from the ones where they
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are actively engaged in the production process to the ones of system controllers,
which serve in fail-safe capacity and should react only when problem occurs (Warm
and Parasuraman, 2008). However, the operators of automated systems, who perform
monotonous but attention demanding tasks, largely face difficulty to maintain
constant level of vigilance during their work shift (Jung et al., 1997). Thus, in the
recent years there is increasing interest in investigation of the possibility of
application of the on-line vigilance monitoring. This eventually directed the field of
neuroergonomics to the development of the neuroadaptive systems, which should
enable mutual interaction between automated system and the operators (Hettinger
et al., 2003; Scerbo, 2006). The main principle of work of neuroadaptive is that both
human and system could initiate the change in level of automation, i.e. the mental
workload to which human operator is exposed, depending on the vigilance level of the

operator (Scerbo, 20006).

Apart from these three main domains of EEG in neuroergonomics studies, another
important application of EEG is for prediction of human error (Eichele et al., 2008;
Eichele et al., 2010; Fedota and Parasuraman, 2010). Neural signal that is associated
with the human error is, so called, error-related negativity (ERN). Eichele et al. (2008)
have reported that the maladaptive brain activity, related to the preceding error, can
be detected around 30 sec before the error occurs. Similarly, the work of Fedota and
Parasuraman (2010) states that studies of the ERN indicate that the brain has
specific error monitoring and feedback system, which is in strong relation with brain
networks that are involved in decision making and learning. Thus, ERN provides the
possibility to understand how errors are made, which could provide the basis for

creating the error prevention strategies (Fedota and Parasuraman, 2010).

Another application of EEG in neuroergonomics studies can be seen through
concurrent studies of physical and cognitive work, which did not received as much
attention in the neuroergonomics studies as previously mentioned directions (Mehta
and Parasuraman, 2013a). For example, Kamijo et al. (2000) examined how are the
cognitive function influenced by the exercise activity. They reported that intensity of
exercise influenced the P300 ERP component, which followed an inverted U-shaped
curve depending on exercise intensity. Another study used EEG- and EMG-derived
corticomuscular measure and it was found that corticomuscular coupling

significantly decreases during mentally stressful condition (Kristeva-Feige et al.,
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2002). Importantly, this was not observable during traditional EMG and force
production measurements, which emphasize the importance of studying also the
brain function during physical tasks (Kristeva-Feige et al., 2002). Studies in this area
of neuroergonomics generally agree that it is important to obtain brain dynamics
together with more conventional ergonomics methods in order to understand the
overall demands placed on human operators during the work that requires physical

and cognitive processing (Mehta and Parasuraman, 2013a).

Although, it was shown that EEG was successfully applied in variety of
neuroergonomics studies, all of the previously mentioned studies shares the common
limitations. These are mainly related to the recording equipment and procedures. In
fact, traditional EEG recording systems suffers from long wiring, which creates huge
movement artifacts, thus restricting natural movements of the participants during
experimental procedures. Moreover, these studies were mainly confined to strictly
controlled laboratory conditions, which require electro-magnetically shielded rooms
with attenuated sound and lightning sources. Thus, the ecological validity of such a
studies has been recently questioned by Gramann et al. 2011. Indeed, it is an invalid
assumption that brain activity measured in dimly lit cubicles and with restricted
movements reflects a general principle of the brain dynamics during cognitive
processes in everyday life (Gramann et al., 2011). Thus, there is increasing interest
in studying the brain dynamics in the naturalistic environments, by utilizing recently
available wireless and wearable EEG systems (Makeig et al., 2009; Gramann et al.,
2011; Debener et al., 2012; De Vos et al., 2014a; Wascher et al., 2014; Gramann et
al., 2014).

Makeig et al. (2009) proposed the mobile brain/body imaging (MoBI) system in order
to investigate how is spatially distributed brain dynamics related to natural human
cognition. It was emphasized that for such a recording, the EEG sensors must be
small and lightweight, battery powered, equipped with wireless data transmission
technology and without the need for skin preparation (Makeig et al., 2009). Following
these requirements, Debener et al. (2012) demonstrated it is possible to reliably
record the EEG signals and even extract the ERPs, while the participants were freely
walking outdoors. They created the EEG system by combining consumer EEG driver
and EEG recording cap and compared the results obtained from the auditory oddball

task in both indoor and outdoor conditions. Finally, they concluded that it is possible
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to extract ERPs in the naturalistic environment with high accuracy (Debener et al.,
2012). Following this study, the possible application of the ERPs, extracted in
everyday environment, for the BCI systems was confirmed by De Vos et al. (2014),
confirming the reliability of wireless EEG systems. Moreover, Wascher et al. (2014)
was among the first to demonstrate that reliable EEG recordings could be performed
in simulated working tasks. In this study, the participants needed to move boxes
around improvised workplace environment and the information on the cognitive
context was reliably extracted and analyzed using eye-blink related potentials, and it
was confirmed that eye-blink related potential are able to provide reliable information
about cognitive processes in realistic working environment, i.e. in applied context
(Wascher, 2014).

Even though, EEG eventually became wearable and nowadays fulfills the most of the
criteria imposed by Makeig et al. (2009), an important limitation for the on-sight
recordings in the industrial environments is that they still require preparation of
participants for recording (Gramann et al., 2011). This is mainly attributed to the
usage of the gel-based, so-called “wet” electrodes. This kind of electrodes are
uncomfortable, as the electrolyte gel must be placed on the head of the recorded
person but previously the head surface should also be prepared in order to ensure
good contact between electrode and recording site (Zander et al., 2011; Gramann et
al., 2011; Mihajlovi¢ et al., 2015). Apart from time consuming for the preparation,
there is also possibility of the skin irritation (Zander et al., 2011). In addition, upon
usage of these electrodes, the recorded person should clean the hair from the gel,
which is also time consuming and impractical. All of these put current EEG devices
far from being user-friendly (Mihajlovi¢ et al., 2015). In fact, Chatterjee and Price
(2009) argued that if wearable technology will be persuasive, they must be more user-
aware, ambient-aware and context-aware. However, at this stage this is not the case
with the EEG systems, but there is a large amount of work conducted in order to
make the EEG systems more attractive to human beings, both for medical and other

everyday situations (for review see, Mihajlovi¢ et al., 2015).

One of the current directions of research in bringing close EEG systems closer to

healthy users and making them more persuasive is the development of dry (Chi et

al., 2010; Gargiulo et al., 2010; Zander et al., 2011; Mihajlovi¢ et al., 2015) and even

skin contactless electrodes (Mathews et al., 2007; Chi et al., 2010; Chi et al., 2012).
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Additionally, moving away from medical applications, a clear momentum in the
development of the consumer-based and dry-electrode EEG devices can be seen in
recent product developments, emotive (www.emotiv.com), Mindo
(http:/ /mindo.com.tw/en/index.php), Muse (http://www.choosemuse.com/), etc.
However, the desired signal quality (low signal to noise ratio) with dry-electrode based
EEG systems cannot be achieved yet and they are still unable to reduce the movement
artifacts, which are related to the relative movement of electrodes against the head
surface (Chi et al., 2010; Chi et al., 2012) that are mainly caused by the fragile and
complex electrode-tissue interface (Mihajlovic et al., 2015). For that reason, reliable
wearable EEG recording for neuroergonomics research can still be made solely with
the wet electrodes, still somewhat limiting its usage for on-site industrial applications
(Mihajlovi¢ et al., 2015). Nevertheless, operators’ brain dynamics can nowadays be
successfully investigated with wearable EEG in faithfully replicated workplaces,
where the ambient conditions and spatial dimensions could be preserved, by
simulating the work activity (Mijovic et al., 2016). This can provide insight in how the
brain responds to complex industrial tasks and these findings can contribute to more

efficient task designs.
3.5 Multimodal Physiological Recordings in Neuroergonomics

Multimodal systems in neuroergonomics studies that include EEG are usually used
either in order to enhance temporal resolution of brain imaging techniques such as
fMRI, fNIRS, etc., or to support EEG with increasing its spatial resolution, i.e. to be
able to more closely locate specific brain regions of interest. Nevertheless, EEG can
be simultaneously recorded also with other physiological sensors that record the
activity of ANS (e.g. HR and GSR sensors), with the aim of better understanding of
nervous system processes that are related to mental state, such as e.g. arousal,

alertness, stress, etc.

Heart rate variability (HRV) is non-invasive measure used to detect cardiovascular
conditions and ANS activity (Sharma and Gedeon, 2012). Electrocardiogram (ECQG)
measures the electrical activity of the heart as it progresses through the stages of
contraction (Ortiz-Perez et al., 2010). Main feature of the ECG signal is PQRST
complex, where the R-R peak intervals are parameters that determines HRV

(Rangayyan, 2015; Sharma and Gedeon, 2012). The differences in the time-course of
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these R-R intervals (heartbeats) are calculated when one wants to extract the HRV,
as depicted in Figure 3-8. Another sensor that is used for robust but rough
measurements of the HRV is the HR sensor. HR sensors mostly record just the
intervals of the heartbeats in time, providing relatively simple signal. HRV can then
be obtained in time domain, as the differential between these successive time-stamps
of the beats. Alternatively, the time-frequency analysis can also be employed for
calculating the power spectral density (PSD) of HRV (Task Force of the European
Society of Cardiology, 1996).
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Figure 3-8: Graphical representation of the PQRST complex and R-R interval (adopted from
Ortiz-Perez et al., 2010)

HRV can be an important indicator of the stress states (Sharma and Gedeon, 2012),
variations in alertness (O'Hanlon, 1972), fatigue (Lal and Kraig, 2011), drowsiness
(Vincente et al., 2008), mental workload (Murata, 1994) and other physiological
states. For example, stress cause increase in frequency of heart beats and decrease
of amplitude of the heart beats in healthy individuals (Sharma and Gedeon, 2012).
O’Hanlon (1972) was among the first to report the relationship between HRV and
driver’s fatigue. In fact, he found that HRV increased with the driving time and related
it to the drivers’ fatigue. Recently, Wijesuriya et al. (2007) confirmed this finding and
proposed a HRV as the reliable measure for estimating drivers’ fatigue. Moreover,
O’Hanlon proposed that a HRV can be also reliable measure of alertness, since HRV

substantially dropped after reactivating the driver in his study. Further, Murata
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(1994) found that mental workload influenced the HRV, in sense that ratio between
low and high frequency power ratio increased linearly with the work level, confirming

sensitivity of mental workload to HRV measures.

Another physiological measure of ANS used abundantly in estimating mental states
is GSR, also known as electro dermal activity (EDA) measures flow of electricity
through the skin of recorded person (Sharma and Gedeon, 2012). There are three
different measurement principles for GSR measurement; however, the most
abundantly is exosomatic measurement where skin conductance is measured by
applying direct current with constant voltage and using silver-silver chloride
(Ag/AgCl]) electrodes and an electrolyte gel (Fowles et al., 1981). It is one of the oldest
methods for measuring the physiological signals from humans and the reason for its
use in the present time is that the data are easy to obtain and the GSR is simple
waveform (Lim et al., 1997). Specific features of interest, which are obtained from
GSR recording, are skin conductance response (SCR) and skin conductance level
(SCL) that can be associated with specific aspects of cognitive state (Lim et al., 1997).
The former (SCR) provide an measure of phasic increase of sweat rate that is related
to occurrence of some stimuli, while the latter (SCL) are obtained in response free
recording, as the number of non-stimulus specific SCRs (Bouscein, 2012). Thus, SCR
represents fast varying skin conductance value, over time course of seconds. Figure
3-9 depicts specific characteristic parameters of the SCR waves. First characteristic
is its latency, i.e. time elapsed between stimulus presentation and the rise of the SCR
wave (Bouscein, 2012). Next important parameter is the rise time, or the time needed
for SCR to reach its upper peak amplitude, which is the next important parameter
that can be obtained from SCR. Finally, half recovery time, that is, how much time is

needed for peak to return to its half amplitude value (Bouscein, 2012).
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Figure 3-9: Graphical representation of the SCR wave, with its main characteristics (Addopted

from Kappeler-Setz et al., 2013)

Similarly to HR measurements, GSR studies confirmed that SCR and SCL could be
used for assessing various cognitive state from changes in ANS. For example,
Blakeslee (1979) analyzed SCRs before and immediately after stimulus presentation
and he reported that SCR magnitudes declined with the performance decrease over
the experiment and he proposed that these changes are in close relationship with
vigilance performance and attentional processes. It was also previously reported that
movements, motor preparation and effort convolved with the increase in EDA, since
the motor-related autonomic responses are causing sympathetic arousal that is
necessary for support of motor behavior (Vissing et al., 1991). Further, Wilson (1991)
showed that the pilot’s EDA measures are highly correlated with the changes in
responses in various demands of the flights, thus relating them to changes in mental
workload to which pilots are exposed. Similarly, Baldauf et al. (2009) found that EDA
activity strongly increases with the increasing cognitive workload during simulated
driving, while it remain unchanged during the low cognitive demands imposed to the
driver. Further, Bundele and Banjeree (2009) proposed that EDA measures
significantly correlate with the mental fatigue during the driving, showing possibility

of timely detection of fatigued driver.
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From all mentioned studies, it is clear that each of the signal modality, namely GSR,
HRV and EEG can reflect various cognitive states. However, the multimodal system
that simultaneously measures and investigates the relationship between these signal
modalities would be beneficial for better understanding both the CNS and ANS
activities in applied environments (Dunaway and Steelman, 2013). Following this
notion, Dunaway and Steelman (2013) proposed the investigation of relationship
between multimodal cognitive load measurements during simulated economic
activities in order to provide the most optimal measure for the examination of
cognitive load during these activities. Further, Giusti et al. (2009) proposed a
multimodal system for investigating the driver’s vigilance level in real time, with the
aim of reducing the probability of car accident due to lapses in attention. They
reported that their system showed the promising results for detection of micro-sleeps
and lapses in attention, however, they reported that this system is not ready for the
real-life driving since it utilizes EEG measurements, which at the time were
conducted with the traditional EEG system susceptible to motion artefacts. Another
multimodal study in study in driving and transportation domain was conducted on
locomotive train operators for the aim of estimating the operators’ arousal (Song et
al., 2014). They also reported that the system based on the multimodal physiological
signal acquisition and processing is indeed relevant and that it could contribute to
increasing safety in public transportation systems (Song et al., 2014). One of the
drawback of such systems could be that such a system could be uncomfortable, as
the workers should wear the physiological sensors over the work shift. However, the
recent study of Doty et al. (2013) stated that their participants in the study reported
moderate to high comfort while wearing HR, GSR and EEG sensor over eight hour of
consecutive recording. Thus, it seems that miniaturization of recording sensors have
increased the comfort for the workers and supported the use of such a systems in
real-working environments. Another important limitation of usage of such a systems
is that in case of real-life recording in applied industrial environments, the company
managers would have full access to the physiological data of the workers, which
raises privacy concerns. Fairclough (2014) recently yielded this concern, where he
argued that physiological data are personal belonging and that before the actual use
of systems for physiological recordings in applied environment, the recorded person
must at least provide his/her consent for the recording. Finally, he argued that a

system of keeping the obtained data should be confidential, as it is in medical records.
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An important notion at this point is that all above-mentioned studies were concerned
with the utilization of the physiological measurements mainly in domain of drivers’
safety, aerospace sector, transportation sector in general and office work. There is an
obvious lack in the literature regarding the recordings of operators’ physiological state
during either simulated or real work in industrial environments. For that reason, this
dissertation mainly aims in investigation of possibilities of utilization of physiological
recording during simulated industrial work, with the aim of timely detection of

deviations in operators’ state during monotonous and repetitive work.
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4.Motion Capture and its application in ergonomics

Industrial operators perform physically intensive tasks on a daily basis, since the
majority of industrial tasks are physical in nature, thus being constantly exposed to
risks of injury (Martin et al., 2012). There are many industrial tasks requiring manual
action of the operator, e.g. object manipulation, lifting, pushing, pulling, etc. that are
one of the major sources of work-related musculoskeletal disorders (MSDs,
Hoozemans et al. [1998]). Although automation has somewhat reduced the need for
physical activity for operators, the operators of automated systems are usually
required to observe the automated process through visual display terminal (VDT)
unit, sitting or standing over prolonged period of time, which can also lead to
development of work-related MSDs (Carter and Banister, 2007). Therefore, the use of
methods from physical ergonomics to assess the work performance is still one of the

most studied directions in HF /E research (Hedge, 2005).

As mentioned in the section 2.2.1 (Physical Ergonomics Domain), diverse methods
and tools exists for the ergonomic assessment of manual tasks and postures of the
workers, such as self-reports, observational measurements and direct methods
(Vignais et al., 2013). Even though the researchers are continuously working on
developing supportive tools for identification and evaluation of potentially hazardous
human motor tasks and postures, such as QEC, manTRA, RULA, REBA, HALTLV,
OWAS, LUBA, OCRA, Strain Index, SNOOK tables and the NIOSH lifting equation,
etc. (Andreoni et al., 2009), the fact is that the self-reports and observational methods
still have certain drawbacks, the biggest being that the analyses require an off-line
analysis and are subjective in nature (Patrizi et al., 2015; Mijovi¢ et al., 2015a).
Moreover, these methodologies are mostly consider during the design conditions, but
they are not used for modification of the existing work conditions (Patrizi et al., 2015).
Therefore, there is necessity for the direct on-site evaluation of operators’ postures
that can be carried out in real-time and in an objective, accurate and quantitative
manner (Partizi et al., 2015). Ultimately, the direct measures of operators’ postures,
by utilizing biomechanical analysis, could provide benefits in practice (Vignais et al.,

2013).

Apart from usages in pose estimation, MoCap sensors can be utilized for affective
computing (Karg et al., 2013; Kleinsmith and Bianchi-Berthouze 2013). As stated by
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Kleinsmith and Bianchi-Berthouze (2013), technological advancement pushed the
body motion analysis beyond that of solely gesture analysis and in multimodal
interaction with physiological measurement, it was shown that body expressions
could be powerful estimator of affective states. Affective phenomena refers to human
emotions, moods, feelings, attitudes, temperament, affective dispositions and
interpersonal stances (Schrer, 2005; Karg et al., 2013). Affective states can be
recognized from body movements, speech, facial expression and physiological
parameters (Karg et al., 2013). Although psychological research indicated over a
century ago that affective states are expressed through body movements, the systems
for automatic recognition of affective states became available only from 1990s, which
largely attracted engineers and computer scientist to this area of research (Karg et
al., 2013). In the early years, facial expressions were mostly studied modality in the
area of affective computing, however it was found that the body expressions are as
powerful as facial expression in conveying emotions (Kleinsmith and Bianchi-
Berthouze 2013). Moreover, one of the advantages of using body motion, in
comparison to the other modalities, is that it is capable to recognize the affective

states from the distance (Karg et al., 2013).

Another area of research where MoCap systems can be used, but are not utilized yet,
is in the area of human cognition. Although it is closely related to affective states,
there is an obvious lack in motion recognition literature related to the application of
MoCap systems for investigation of the relation between movements and vigilance or
attention. Typically, when performing a specific task, human shows two types of
behavioral activities, those directly related to the task performance, and those that
are task unrelated behavioral activities (Roge et al., 2000). Based on the various
research from 1970s, Roge et al. (2000) classified these task unrelated activities in

five categories:

‘Postural adjustments’— movements of one or several parts of the body in space
2. ‘Verbal exchanges’ — Those communications which does not include any piece

of information related to the work activity itself

‘Ludic activities’ — movements indicating the manipulations of the movements

‘Self-centered gestures’ — movements of one or both hands towards the body

‘Non-verbal activities’ — practically equivalent to facial expressions
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Generally, it was reported that the number of these task non-specific activities
progressively increases with the duration of the work, regardless of the time of the
day (Rogue et al., 2000). Although, Roge et al. (2000) also confirmed that the number
of task unrelated movements were negatively related to the vigilance level, their
analysis consisted of recording the participants with the red-green-blue (RGB)
camera and the movements were quantified in the post-hoc analysis, through manual
counting of these movements. However, this kind of analysis is equivalent to
observational methods and therefore, unreliable. On the other hand, the MoCap
systems could be engaged in such analysis and automate the process of recording
and analyzing the human movement, with the aim of assessing the human cognitive

state during the regular work routine (As it will be presented in Chapter 9).
4.1 MoCap Devices in Ergonomics

The direct analysis of human movement is mainly based on pose estimation, which
refer to the process of estimating the configuration of the underlying kinematic
skeletal articulation structure of a person (Moeslund, 2006). Various sensors can be
utilized for pose estimation, starting from classical RGB cameras (Nakajima et al.,
2000), and variety of range cameras and depth sensors (e.g. structured light
technology; Zhang, [2012] or through combination of wearable sensors, e.g. internal
motor units (IMUs; Stiefmeier et al. [2008]). In industry setting, researchers are
working on applying this approach in defining work processes (Hori et al., 2006),
preventing improper worker positions (Li & Lee, 2011) and proper training and

monitoring of new workers (Ray & Teizer, 2012).

An overall research of software and hardware available on the market for
biomechanical analysis indicated a number of largely diverse solutions (as presented
in Mijovi¢c et al., 2015a). Larger companies (especially automotive) have made
considerable financial investments in Motion Capture (MoCap) devices in recent years
(Horejsi et al., 2013). The devices that are mostly used for ergonomics evaluation are:
Impuls X2, motion capture system (PhaseSpace, Inc.); The ART Motion Capture
(Advanced Realtime Tracking, Inc.); MOTIONVIEW™ (AllSportSysrems, Inc.), etc.
These devices are well known, i.e. from the entertainment industry, where it is
possible to animate a virtual character as a result of capturing real actor movements

(Hojresi et al., 2013). These expensive MoCap device, provide the possibility to acquire
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positions of points (called markers) on a character’s body in real time. Once the data
has been acquired, there is a need to import it to the 3D simulation software, e.g.
JACK (Siemens, Inc.), 3DSSPP (developed at wuniversity of Michigan,
http:/ /www.umich.edu/~ioe/3DSSPP/index.html), OpenSimulator

(http: / /www.opensimulator.org) etc. in order to perform subsequent ergonomics

analysis.

Even though MoCap systems could offer highly precise ergonomic analysis, there are
still certain bottlenecks in performing the on-line measurements in real-life industrial
environments (as discussed in Mijovi¢ et al.,, 2015a). The majority of commercial
MoCap devices are financially demanding and for reliable on-the-fly recording, it is
often needed to devote an entire room (Hojresi et al., 2013). This presents one of the
major drawbacks for their use in industry and especially in small to medium
enterprises (SMEs). Further, MoCap Systems mainly used external sensors (Led
diodes, Depth Of Field targets, etc.), which are attached to the recording person, thus
posing movement limitations to the workers and being uncomfortable for the use in

the industrial settings.

Up to date, there are only two systems that could possibly be used for the on-line
recordings and analysis: Real-time Siemens JACK & PSH Ergonomics Driver

(Synterial, Inc., http: / /www.synertial.com) and Cognito system (developed within EU

project Cognito, framework FP7, http://www.ict-cognito.org and results were

published in Vignais et al., 2013). However, the first system can be used when
company is addressing the ergonomic aspects of manual operations during early
stages of product design and manufacturing planning and there is a need to use the
IGS Synertials motion captures suits. On the other hand, the Cognito system uses
on-body sensor network. These sensors are composed of tri-axial accelerometer, a tri-
axial gyroscope and a tri-axial magneto- inductive magnetic sensor (Vignais et al.,
2013). Cognito systems does not record the movements of the worker, but uses the
sensor readings as an input data to computer based RULA ergonomic assessment
method and provide feedback when certain thresholds are reached (Vignais t al.
2013). Therefore, both of the systems are dependent on the external sensors attached
to the person (presented on the Figure 4-1), which still limits their use in the

naturalistic industrial environment.
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Figure 4-1. (a) Combination of Synertial IGS suit with Siemens JACK software for ergonomics
evaluation of car assembly, a case study from Skoda automotive (adopted from:
wwuw.synertial.com); (b) — IMUs sensor network developed on Cognito project. In this case,
apart from possibility to track the workers motion, the Cognito system provides also support to
the worker in sense of information on head-mounted VDU, as seen on figures bellow (adopted

from http:// www.ict-cognito.org)

With the technological advancement in the computer vision technology, new MoCap
systems emerged that does not require neither external markers nor IMUs for the
precise acquisition of the human motion. These systems are based on structured light
technology (Zhang et al., 2002). Since the introduction of such systems, the gaming
industry accelerated the development of consumer based products, which were
primarily aimed for contactless interaction between the user and the game itself, in
form of Microsoft Kinect. However, the Microsoft provided an open source software
development kit (SDK) for Kinect, which attracted many scientists to investigate the
possibilities to apply Kinect for various applications, such as gait recognition
(Milovanovic et al., 2012; Milovanovi¢ et al., 2013), ergonomics assessment (Dutta,
2012; Diego-Mas and Alcaide-Marcal, 2013; Partizi et al., 2015), etc. Another, more
recent sensor that has been developed, which is essentially based on the same
principle as Kinect is the Leap Motion™. Although it was primarily developed for the
explicit HCI between user and computerized system, its SDK is also freely available
which opened possibility to investigate the potential for its application in various
application fields (Zubrycki and Granosik, 2014; Bassily et al., 2014). The main

difference between the Kinect and Leap Motion is that the Kinect is capable of
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recording the full body motion, while the Leap Motion has much smaller recording

range and it is used for hand pose estimation.

4.1.1 Kinect and its Application in Ergonomics

Kinect consists of several sensors that are placed in one compact device (Figure 4-
2a). Practically, Kinect belongs to the group of 3D depth camera, since it contains a
depth sensor, a color camera and a four-microphone, that provide a 3D full-body
MoCap device (Zhang, 2012). The depth sensor contains of IR projector and IR camera
(as depicted on Figure 4-2b). The Kinect working principle is based on structured
light technology. The IR projector is an IR laser that passes through diffraction and
it fires a set of IR dots in the acquisition area (Zhang, 2012). Once the dots land on a
certain 3D object, the IR camera acquires the reflected pattern and the device
performs the analysis using structured light algorithm’s in order to compute the
depth map and it is capable of 3D object recognition (Zhang, 2012; Patrizi et al.,
2015). More closely, a depth value is assigned to each pixel of the image acquired by
the RGB camera with the aim of image production, which pixels combine the
information about red, green and blue color, and the distance from the Kinect sensor.
Further, the acquired color and depth map is segmented in order to recognize the
human body (Partizi et al., 2015). Kinect has also inbuilt algorithms for skeletal
tracking, in which the human body is represented by specific key-points that

represents human joints, e.g. hand, neck, etc. (for review see Zhang, 2012).

a>?

IR Camera

RGB Camera

IR projector 3-axis accelometer

Microphone Array

Figure 4-2: (a) - Kinect Sensor; (b) - Position of the sensor inside the Kinect; (c) - Graphical
representation of the Kinect acquisition space (Addopted from Milovanovi¢ et al., 2013)
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The acquisition are of the Kinect sensor is from 0.8 m to 4m frontally from the sensor
placement in the z-axis, and the x and y axis are determined by the recording angle
in a way that in horizontal axis it covers 57.59, while vertically it can cover 43.50£270,
depending on the tilt of the device (Milovanovic¢ et al., 2013). The acquisition space is

graphically depicted on the Figure 4-2c.

Kinect has shown strong potential for the ergonomics studies. For example, Martin
et al. (2012) proposed its usage for the real-time pose estimation during the lifting
tasks, and particularly in training the operators. Similarly, Clark et al. (2012)
investigated the usage of Kinect for clinical application, where frontal and lateral
reach were investigated and they compared it to the results obtained by reliable Vicon
MoCap system (which requires the on-body markers). Their results support the
Kinect for future ergonomics assessment in clinical application, since it is less
intrusive and far less expensive than benchmark Vicon system (Clark et al., 2012).
Further, Diego-Mas and Alcaide-Marzal (2013) demonstrated the Kinect’s capability
to support the observational method OWAS (Ovako Working Posture Analysis), by
automated acquisition of joint position and translating them directly to the scoring
sheet of work postures as proposed by OWAS. Moreover, they compared the results
obtained by Kinect and Vicon system and showed that Kinect proved to be reliable
tool for motion tracking of workers during the work tasks (Diego-Mas and Alcaide-
Marzal, 2013). Another recent study compared the performance of the low-cost Kinect
sensor and high-end marker-based MoCap sensor BTS SMART and they provided the

support for the future use of Kinect in ergonomics assessment (Partizi et al., 2015).

Above-mentioned studies highly support Microsoft Kinect and its technology for
future application in ergonomics for the online posture assessment of the workers.
Thus in this dissertation it is aimed to utilize marker-less sensor for the recording of
the participants during the simulated working activities, with the aim of developing
model for the on-line posture estimation. Moreover, as discussed previously, the body
motion can be related to the cognitive state of the person through the evaluation of
the task unrelated movements, thus it is aimed in investigating the correlation of

these movements with the attention level as estimated by the EEG recordings.
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4.1.2 Leap Motion controller and its Applications

The Leap Motion controller is a small and affordable consumer-based motion sensor
(Figure 4-3a) that is available on the market since July 2013 (Fanini, 2014). Working
principle of the Leap Motion controller is similar to the one from the Kinect, where
the biggest difference is that Leap Motion was developed for hand gesture recognition,
while Kinect is capable of acquiring full body motion and facial expressions (Marin et
al., 2014). Another important difference is that the Leap Motion controller provides a
more limited amount of information, in sense that it provide just the information
about the key points, rather than complete depth map (Marin et al., 2014). Further,
the acquisition area of this sensor is much smaller than the Kinect’s one (Figure 3-
2b), but it provides much more accurate data points (Marin et al., 2014), in the range
of sub-millimeter accuracy (Bassily et al., 2014). As depicted at Figure 3-3a, the Leap
Motion controller consists of 2 IR cameras and 3 IR Light-Emitting Diode (LEDs) that
are able to track hands, fingers and a few tools in mid-air inside a specific field of
view (Figure 4-3b). Generally, it should be placed on the desktop facing upwards in

order to operate accurate with high tracking frame-rate inside of designated field of

view (Marin et al., 2014).

(b)

Figure 4-3: (a) - Leap Motion Controller and its inner structure: 1 — IR LED, 2- IR camera; (b) —
Graphical representation of the Leap Motion’s field of view, where the acquisition space
limitations are as follows: 150° angle on the long side, 120° on the short side, 600 mm above
the controller and 600 mm wide on each side (Figures adopted from

https:// www.leapmotion.com/ product/ desktop accessed on 6/11/2015)
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The accuracy of the Leap Motion measurements were confirmed in the work of
Weichert et al. (2013). They used the industrial robot with a reference pen that was
placed above the Leap Motion controller, which allows the accuracy of the position
coordinates down to 0.2 mm. They confirmed that the Leap Motion controller was
precise in tracing the pen tip with the accuracy lower than 0.2 nn, thus they
concluded that the obtained results were accurate and robust (Weichet et al., 2013).
As its accuracy was confirmed, the follow-up studies were conducted in order to
investigate the possibility of applying the Leap Motion controller in medical
applications. Ebert et al. (2014) created the plug-in for the OstriX medical image
viewer that was based on the Leap Motion controller, i.e. they connected the hand
gesture analyzer based on Leap Motion controller to the OstriX medical system in
order to allow the interaction with the viewer solely through the hand gestures (Ebert
et al., 2014). They finally proposed that these hand gesture technologies should be
standardized for use in medical applications (Ebert et al., 2014). Another medical
application was proposed by Khademi et al. (2014), as a tool for stroke rehabilitation
in order to practice the finger individuation. Apart from medical applications, Leap
Motion controller was proposed as a tool for remotely controlling the robotic arm, by

hand gestures (Bassily et al., 2014; Zubrycki and Granosik, 2015).

From all above mentioned, it is clear that the Leap Motion can be utilize for the
various application fields of HCI and human-robot interaction (HRI). However,
currently there are no studies that proposes the utilization of the Leap Motion for the
ergonomics assessment. One of the ways in which it could be applied is for the
estimation of the hand position during material manual handling and especially for
hand pinch and grips. The problem of hand pinch and grips has been included in the
occupational repetitive actions (OCRA) analysis and discussed in international
ergonomics standard ISO 11228-3:2007. Inappropriate pinches can lead to muscle
strain and should be avoided (ISO 11228-3:2007) and therefore they should be
avoided in low-load material handling. However, in the real-life working environment
this is not feasible and therefore the evaluation of these actions should be performed
in working environment. Since the Leap Motion can provide the precise acquisition
of the key-point position, the pinches (as depicted on Figure 4-4) could be evaluated
in real-time, with the aim of reducing possible injuries and long-term exposure of the

irregular material pinches and grips.
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Figure 4-4: A few example of low-load material pinches (Adopted from ISO 11228-3:2007)
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5.General Methodology: Towards Creation of

Multimodal System for Cognition-aware Computing

The third and fourth Chapter discussed on how different signal modalities could be
used for the assessment of user cognitive state and their application in the industry.
It was discussed how physiological sensors can be used independently, but also in
the multimodal interaction, for better understanding of human cognition in
naturalistic environments. Moreover, chapter 4 discussed on utilization of MoCap
devices for pose estimation, but also for the aim of assessing the information on the

mental state of the person.

In this chapter, which is based on the work of Mijovi¢c et al. (2015a) that was
presented on “Human Computer Interaction International conference (HCII 2015)”,
the multimodal system that consist of physiological (EEG, GSR, HR) and motion
capture (Kinect and Leap Motion) sensors will be presented. The objective of the
system is to synchronously record the operators’ physiological and motion signals
during simulated work routine, with the aim of detecting the deviations in the user
state, so that appropriate actions could be timely performed once the physiological
parameters starts deviating from the optimal conditions. However, this thesis is
concerned solely with the post-hoc analysis and investigation of the relationship
between these signal modalities. Nevertheless, the real-time estimation of the
workers’ cognitive states will be performed in the future studies. Another objective of
the multimodal recording is to investigate how different parameters influence the
workers cognitive states. These results from post hoc analyses could be used in the

workplace design phase and will be presented in Chapter 6 and Chapter 7.

The multimodal system can be considered as a system that is capable of implicit
multimodal HCI (so called MMHCI; Jaimes and Sebe, 2007; Mijovic¢ et al., 2015a).
Traditionally, MMHCI is used with the main aim of investigating the possibility to
bring closer computer technologies to the users (Jaimes and Sebe, 2007). However,
MMHCI research was mainly concerned with an explicit, rather than implicit
interaction. In order to fulfill this gap current thesis is mainly aiming in investigating
possibility for employing implicit MMHCI, particularly in industrial environment (As

presented in Mijovic et al., 2015a). In the following chapters, the term of implicit HCI
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will firstly be introduced (chapter 5.1). In order to develop the implicit MMHCI system
the replicated workplace from industrial partner “Gomma Line” (Kragujevac, Serbia)
was used and it will be presented in chapter 5.2. The simulated assembly operation
is described in the Section 5.3.1. Since one of the aims of the studies was the
investigation of the P300 ERP component, the participants were presented with the
psychological tests, which are described in Section 5.3.2. Further, the participants
in the study were equipped with the wearable sensors network for physiological
recording as presented in Section 5.4.1. and their movements were recorded with the
MoCap devices as presented in the Section 5.4.2. Finally in order to synchronously
record each of the signal modality, the Lab Streaming Layer (LSL) was used and the

overall system architecture will be presented in the Section 5.5.
5.1 Implicit HCI system for Cognition-Aware Computing

As already stated in the introduction section, HF/E investigate how the human
interacts with the system. Similarly, the HCI is a cross-disciplinary area of research
that deals with design, theory, implementation and evaluation of the way that
humans interact with the computer devices (Kim, 2015). Presently the interaction
between human and devices is becoming increasingly important for human success
in daily life (Schmidt, 2000). Traditionally, HCI was mostly concerned with the explicit
interaction, i.e. it was concerned with the interface design (Hartson and Gray, 1992).
In explicit interaction the user provides the computerized system with an input, in a
certain level of abstraction through a command line, graphical user interface (GUI),
gesture or speech input, and expect that the system further process that information
and provide certain output (Schmidt, 2000). In that view, explicit HCI technological
context casts a view on computers that are regarded as solid-state machines relying
on explicit interaction through mouse, keyboard and monitor or in more recent years

through speech, gesture and touch screens.

Although users became familiar with the devices that are enabling explicit HCI, they
undoubtedly limit the speed and naturalness of HCI (Pavlovic et al., 1997).
Alternatively, specific challenge for the improvement of existing HCI studies is to bring
it closer to the communication patterns of human beings, and hence to create more
“natural” interaction. Schmidt (2000) provided a definition of implicit HCI as “An

action performed by the user that is not primarily aimed to interact with a computerized
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system, but which such a system understands as an input’. This definition was
preceded by the notion that the most of the interaction between people, and situation
in which they are interacting, is implicitly exploited in communication (Schmidt,
2000). This notion clearly outlines that an important part of natural interaction
actually depends on implicit interaction. In that direction, the development of small,
reliable and affordable mobile sensors opens a whole set of opportunities for natural
interaction with computing entity through sensitive workplace environment (Mijovic

et al., 2016c¢).

Present thesis investigated the possibility of introduction of the implicit HCI system
for monitoring the workers cognitive state, i.e. for cognition-aware computing (Bulling
and Zander, 2014) in industry. Cognition-aware computing was recently defined as
the computing system that senses and adapts to cognitive aspects of personal context
(Bulling and Zander, 2014). The introduction of cognition-aware computing in
industry would be beneficial, since the industrial workers that are working in
assembly positions, which require performing monotonous repetitive tasks, are
susceptible to boredom, mental fatigue and loss of concentration as time progresses
(Smith, 1981; Fisherl, 1993). Their activities often require execution of tasks
dependent on use of tools and/or operating a machine, and in such a context explicit
interaction with computer becomes impractical. Therefore, a new approach for
communication is needed that can be introduced through an interaction model that
is more natural. Stable foundation in building such interaction model in production
workplace should be on different communication modalities that can ensure implicit
interaction between worker and workplace, such as movement, voice,
psychophysiological signals, etc. In order to reach this goal, a truly unobtrusive
sensing environment was created through the introduction of sensitive workplace

(Mijovic et al., 2015a; Mijovic et al., 2016c¢).

Proposed sensitive workplace consists of unobtrusive MoCap technology and
wearable physiological sensors, which both provide the possibility for monitoring the
work activities, without interfering with standard work routines of industrial workers
(As it will be presented in the following Section). In essence, the proposed approach
should provide a continuous and real time monitoring of worker activities in realistic
production environment, which could enable timely detection of deviations in the

worker’s cognitive state. In this way the system could be capable of preventing the
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operating error, thus decreasing the number of injuries at the workplace and in the
same time increasing the productivity and improving an overall workers’ well-being.
In comparison to existing systems that require workers’ adoption to designed
workplace, the approach proposed here should enable continuous improvement of

the work process according to specific profile of the worker.

The proposed model of the sensitive workplace system, which will rely on novel
human-computer interaction system founded on implicit input, is depicted on Figure
5-1. Underlying idea is to use unobtrusive motion tracking sensors to record worker’s
body movements (BodyMovement), identify gestures (GestureRecognizer) and develop
a model of optimal worker movement on a workplace (GestureAnalyser), Figure 5-1.
Using structured light technology captivated in the Kinect and Leap Motion devices,
it is possible to capture body movements represented with estimated stick figure of
body and hand pose estimations retrieved in near real-time. Based on this input it is
intended to develop a Gesture recognizer, able to recognize generic gesture patterns
on a workplace. Output from this module will feed in to application Gesture analyzer,
which is in the development phase, in order to specify models of worker behavior on

a specific workplace (Mijovic¢ et al., 2015a).

On the other track, physiological signals were acquired, using EEG, GSR and HR
sensors to record workers physiological signal (physiological signal), distinguish
physiological features (physiological feature extractor) and attempt to detect worker
attention state, mental fatigue, vigilance, engagement and emotional state
(physiological analyzer), Figure 5-1. All physiological sensors were connected to
recording computers via Bluetooth connection, thus the movement artefact that are
usually caused by the long wiring were suppressed. Upon data acquisition and
processing, it is intended to build a physiological feature extractor and physiological
analyzer that should be used for the real-time assessment of the worker’s cognitive

state. However, these modules are still under development.

Finally, in order to improve the physiological analysis, and reach more stable
conclusions on the workers’ cognitive state, future research will be conducted to
investigate the possibility of including the output from gesture analysis in to
physiological analyzer decision-making process (Figure 5-1). Since body movement

represents a final result of cognitive effort, establishing correlation between noticed
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disturbance in worker gestures and mental state of the worker (acquired through his
physiological signals) should enable early recognition and prevention of possible

mental or physical strain of the worker.
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Figure 5-1: Visual Representation of the Multimodal system of the sensitive workplace

(Addopted from Mijovié et al., 2015a)

5.2 Development of the Sensitive Workplace

For the purpose of investigation the feasibility of the sensitive workplace concept, a
full scale workplace replica was created, through consultancy with the car sub-
component manufacturing company, at the Department for the production
engineering, Faculty of engineering, University of Kragujevac. Since reliable EEG
recording still relies on wet electrodes, the on-site industrial EEG recording cannot

be performed yet. For that reason, we simulated the production process of the rubber
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hoses, used in the hydraulic brake systems in automotive industry, in a faithfully
replicated workplace (Figure 5-2). In order to create a naturalistic environment all
major elements from the real factory settings have been included while preserving
respective spatial ratios and mimicking the ambient conditions. Figure 5-2 (left
image) depicts the real-life workplace, while the laboratory replica of the workplace is

presented on Figure 5-2 (right image).

Factory setting Laboratory setting

Figure 5-2: Graphical representation of the real workplace (left image) and the faithful replica
of the existing workplace (right image)

The laboratory was air-conditioned and microclimate conditions controlled, keeping
the ambient temperature at 24+1°C while the measured relative air humidity value
was between 40% and 60%. The luminance at the real workplace was also replicated
from the industrial settings, using the same lightning and maintaining the luminance
value at 810 Ix. Finally, the noise trace was obtained by recording sounds in the
vicinity of the original production facility, using cardiodid condenser microphone
AT2020USB (Audio-technica, Japan), and this was replayed during the experiments
with an SW-HF 5.1 6000 surround multimedia speaker (Genius, Taiwan). The
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ambient (light, noise) and microclimate (temperature, humidity) condition values
were obtained using multifunctional environmental meter device PCE-EM882 (PCE

instruments, UK).

Once the replicated workplace was created, the participants in the study were
equipped with the wearable physiological sensors network, as depicted on the Figure
5-3. Additionally their movements were recorded using Kinect sensor, which was
placed in front and above the participants (as shown at the Figure 5-3) and hand
gestures were recorded with the Leap Motion sensor, which was placed in the table,
bellow the hands of the participants (Figure 5-3). The detailed description of the

sensors used in the study will be provided in the following Section 5.4.

Microsoft Kinect Wearable EEG sensor

Leap Motion

Wearable GSR sensor

Figure 5-3: Figure 3. Replicated workplace and the sensors placements
5.3 Experimental Task

5.3.1 Simulated Assembly Task

In the production process, an operator carries out the crimping operation in order to
join a metal extension to a rubber hose. This single operation, carried out in a sitting

position, consists of eight simple steps (actions). Step-by-step simulated operation,
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carried out by participants in the replicated working environment, is graphically

presented in Figure 5-4 and explained in detail further in the text.

During the simulated operation, a single functional modification in the replicated
workplace was introduced. In order to elicit the P300 ERP component during the
simulated task, an information for the initiation of the simulated operation was
presented to the participants in the study in the form of the visual stimuli (explained
in detail in the following Section). This was necessary, since the covert cognitive
context is usually encrypted in the brain dynamics and in order to isolate and analyze
specific cognitive processes, they should firstly be evoked and co-occurring factors
should be isolated (Bulling and Zander, 2014). The ecological validity of such a
modification lies in the fact that workers on an assembly line would often be provided
with the information about the performed task at any given moment (Stiefmeier et al.,
2008). Thus the simple stimulus, which informed the operator when to start the
assembly operation during the experiment, did not significantly differ from industrial
practice. Importantly, the appearance of the visual stimuli was programmed to match

the pace of operations and be comparable to the industrial setting.

Simulated operation consists of eight major production steps that can be summarized
as follows (Figure 4-4): first, the information to initiate the simulated assembly
operation is presented to the participant, in the form of visual stimulus (step 1), upon
which he is instructed to instantly initiate the operation by taking the metal part
(step 2) and the rubber hose (step 3). Following this, participants should place the
metal part on the hose (step 4) and place both inside the crimping machine (step 5).
Once the rubber hose and metal part are correctly placed inside the opening, the
industrial green lamp lights and it presents a visual cue to the participant, informing
him that the part has been correctly placed. Participant then proceed by promptly
pressing the pedal, which initiates the improvised machine and replicates the real
machines’ crimping sound with a duration of 3500 ms (step 6). The real crimping
operation that would happen upon pressing the pedal was avoided, preserving its
major aspects from operator’s perspective - the sound it produces and the cessation
of which indicates the end of machine operation, analogously to the real case. Upon
completion of the simulated crimping process, the participant removes the

component and places it in the box with completed parts (step 7). Finally, following
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these steps, the participant sits still, waiting for the subsequent stimulus (step 8)

indicating the next-in-line operation.

Pick up the hose

Pick up the connector

Connect the two

STEP 5 _

=]
b

=
S
Insert in to machine

Place part in gray box
Await for the stimuli

Figure 5-4: Graphical presentation of the step-by-step simulated crimping operation

An important notion is that in presented experimental design, the recording of the
reaction times (RTs) could not be measured in the traditional fashion, as the time
elapsed between the stimulus presentation and the response by the participants
(usually executed with the right index finger). Instead, the RTs here were measured
as the time elapsed between the stimulus presentation (step 1) and the pedal press
(step 6 from the, also depicted on the Figure 5-4). The pedal used in our study was
actually a modified mouse button and it was connected to the recording computer
via USB connection. This allows the calculation of RTs, as the difference between
timestamps from stimulus presentation (operation initiation) and the beginning of
the machine simulated crimping process (As indicated with the chronometer

presented on the image of Step 1 and Step 6 from the Figure 5-4).
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5.3.2 Experimental Procedure

Experimental procedure was similar for all the experiments and it was described in
detail in Mijovic et al. (2016a), and this section is based on previously published work

(Mijovic et al., 2015a; Mijovic et al., 2015b; Mijovic¢ et al., 2016a; Mijovic¢ et al., 2016Db).

During the experiments, at least two experimenters were constantly present in the
laboratory in order to assure that experimental procedures were strictly followed. The
experimenters were seated behind an opaque board (so that participants could not
see them during the task) and they observed the participants through a RGB camera

that recorded the whole experiment.

Participants were seated in a comfortable chair in front of an improvised workplace
including the improvised machine (Figure 5-4). As stated in Section 5.2, in order to
extract the ERP component from continuous EEG recording, a functional
modification in information presentation was presented to the participants,
simultaneously with the simulated assembly process. The participants were
subjected to the modified SART, which was named Numbers (Figure 5-5) and Arrows
(Figure 5-6) task to prompt initiation of the assembly operation. Both tasks were
presented on the 24” screen from a distance of approximately 100 cm. The screen
was height adjustable and the center of the screen was set to be level with
participants’ eyes. Upon presentation of the stimuli on the screen, the participants
were instructed to complete the previously explained assembly operation (as
graphically presented in Figure 5-4). An important notion here is that in experimental
studies presented in the Chapter 6 and 8, participants were completing solely the
Numbers task, while in the studies presented in the Chapters 7 and 9, the
participants were completing both the Numbers and Arrows task in the balanced

order (with a 15 minutes break between the tasks).

As explained in Mijovi¢c et al. (2016a), the original SART paradigm consists of
consecutively presenting digits from ‘1’ to ‘O’ and participants are required to give the
speeded response on all stimuli, with the exception of digit '3’ (Robertson et al., 1997).
The main difference between the original SART and Numbers paradigm is that the
digits in Numbers are randomized, with the condition that forbid the appearance of
two consecutive digits ‘3’ (‘no-go’ stimulus) and in between two ‘no-go’ conditions at

least two ‘go’ conditions must appear. Thus, in our study participants were unaware
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of the timing when the ‘no-go’ stimulus would appear. Further, in the original SART
paradigm it is requested that participants provide the speeded response with the
index finger upon the stimulus presentation. However, this would impede the
simulation of the real working operation, since it would require an additional, task
un-related operation from participants. Instead, in the Numbers paradigm,
participants were instructed to initiate the assembly operation as soon as the visual
(target) stimulus appeared on the screen, with whichever hand they felt more
comfortable (they could freely choose between step 2 and 3 explained beforehand).
Additionally, similarly to Dockree et al. (2007), five randomly allocated digit sizes were
presented to increase the demands for processing the numerical value and to
minimize the possibility that subjects would set a search template for some
perceptual feature of the "no-go" trial (the digit ‘3’). Digit font sizes were 60, 80, 100,
120 and 140 in Arial text font.

Target
('go') stimulus
t=1000ms

Non-target
& ('nogo') stimulus
t=1000ms
Target
('go') stimulus
t=1000ms
Target
('go') stimulus
t=1000ms

Figure 5-5: Graphical representation of the Numbers task (Adopted from Mijovié et al., 2016b)
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The Arrows task was presented and explained in Mijovi¢ et al. (2016a). The stimuli
and procedures for the Arrows task were adopted from the Donkers and Boxtel
(2004). The Arrow task is also a “go/no-go” task, where the arrows pointing to the left
and right appear on the screen; the white arrows represent the ‘go’ (target) condition,
while the red arrows represent the “no-go” stimulus. Similarly to the Numbers task,
the stimuli sequence in Numbers was randomized with the condition that forbade
two consecutive appearances of the “no-go” stimuli. The main difference between the
Numbers and Arrows tasks was that in the Numbers task participants could freely
choose the hand with which they would initiate the assembly operation, while in the
Arrows task, participants were required to initiate the action altering the hand
according to the direction in which the white arrow on the screen was pointing. In
other words, in the Arrows task the participants should initiate the action with the
right hand (step 2) if the white arrow was pointing to the right, or with the left hand
(step 3) if pointing left.

Left hand First

. Target

('go") stimulus
t=1000ms

& ‘ . Non-target
('nogo') stimulus
t=1000ms

Target
('go') stimulus
-t=1000ms

(lgol) stimulus Right hand First

t=1000ms

Figure 5-6: Graphical presentation of the Arrows task (Adopted from Mijovié et al., 2016b)
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Regardless of the task, all the stimuli were presented for 1000ms on a black screen
background. Each task consisted of 500 stimuli, where the probability of appearance
of ‘no-go’ stimuli was set on 10% (S0 in total), while the ‘go’ stimuli was presented
450 times. The inter-stimulus interval (ISI) between two consecutive ‘go’ stimuli was
on average 11240ms (STD = 410ms), while between ‘no-go’ and following ‘go’ stimuli
the average ISI was 3210ms (STD= 120ms). The duration of the each task was around
one and a half hours, upon which participants had a 15 minute break, before starting
the second task. Thus, the whole experiment lasted around three hours and fifteen

minutes.

The task specifications were programmed in Simulation and Neuroscience
Application Platform (SNAP, available at https://github.com/sccn/SNAP), developed
by the Swartz Center for Computational Neuroscience (SCCN). As explained in
Bigdely-Shalmo et al. (2013) and Gramann et al. (2014), SNAP is a python-based
experiment control framework that is able to send markers as strings to Lab
Streaming Layer (LSL, available at https://code.google.com/p/labstreaminglayer/).
The LSL working principle will be explained in detail in Section 5.5.

5.4 Devices used in the study

5.4.1 Physiological Sensors

5.4.1.1 Wireless EEG System SMARTING

EEG data acquisition was performed using state-of-the-art wireless EEG system
SMARTING (mBrainTrain, Serbia), with the sampling frequency of 500 Hz and 24-bit
data resolution (Figure 5-7a). The small in size and lightweight EEG amplifier
(85x51x12mm, 60gr) is tightly connected to a 24-channel electrode cap, (Easycap,
Germany) at the occipital site of the participants’ head, using an elastic band. The
connection between the EEG amplifier and recording computer was obtained using
Bluetooth connection (Bluetooth v2.1). The design of the cap-amplifier unit ensured
minimal isolated movement of individual electrodes, cables, or the amplifier, which
strongly reduced electromagnetic interference and movement artifacts. Further, small
dimensions of the recording system provided full mobility and comfort to the
participants, as movement constraints were not imposed. The electrode cap

contained sintered Ag/AgCl electrodes that are placed based on the international 10-
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20 System: Fp1l, Fp2, Fz, F7, F8, FC1, FC2, Cz, C3, C4, T7, T8, CPz, CP1, CP2, CP5,
CP6, TP9, TP10, Pz, P3, P4, O1 and O2 (as presented on the Figure 5-7b). The
electrodes were referenced to the FCz and the ground electrode was AFz. Before
initiation of the experiments, procedure set imposed that the electrode impedances
must be below the 5SkQ value, which was confirmed by the device acquisition
software. The device acquisition software is also capable of real-time data streaming

through LSL to the lab recorder.

(a) (b)

Figure 5-7: (a) — wearable EEG system SMARTING and its position on the scalp of the recorded

person; (b) Electrodes placement

54.1.2 Wireless GSR device

The wireless GSR device used in studies was developed at the University of
Kragujevac. The GSR device is capable of exosomatic recording, using direct current.
Sampling frequency is 40 Hz and the skin conductivity can be measured in the range
between 0-120uS. Wireless operation: Bluetooth 2.4GHz, Class 2 is embedded in the
device, for the real-time data acquisition on the recording computer, which are
further streamed through LSL to the lab recorder. This was enabled through the
stand-alone application developed at the department. The GSR device is also small
and compatible, with the overall dimensions of 50x40x10 mm. The amplifier is
connected to two Biopac-EL507 electrodes that have following specifications: Ag/AgCl
contact (11 mm diameter), electrolyte wet liquid gel of 0.5% chloride salt, size
27x36x1.5 mm. The electrodes are placed on inactive (left) foot, in order to reduce the
movement artifacts, according to the recommendation from Bouscein (2012). The

Device and electrode placements are graphically presented on the Figure 5-8.
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(b)
Figure 5-8: (a) - Wireless GSR device; (b) - electrode placement (as depicted by numbers 1 and

2) for exosmotic recording, as recommended by the Bouscein (2012)

5.4.1.3 Wireless Heart Rate Sensor

For the measurement of the Heart Rate, the CNS-SW5 (Canyon, Taiwan) commercial
device was used (Figure 5-9a). The Canyon CNS-SWS consists of chest strap
(recording/transmission belt) and a watch, which is capable of receiving the instances
of heartbeats' occurrence being transmitted from the chest strap using frequency of
S5500Hz. Due to this frequency, the transmitting range is short. In order to increase
the transmitting range, the ECG monitor was developed by the Department of
production Engineering, University of Kragujevac. The ECG monitor consists of signal
receiver (from the transmitting belt) and AM transmitter, which sends impulses on
frequency of 433.92 MHz. In this way, the transmitting range can be significantly
improved. Finally, the radio receiver sends the radio impulses to the recording
computer over the USB connection to the recording computer, and the stand-alone
application was developed for the real-time signal acquisition and streaming the data
to the lab recorder from the transmitting belt. The radio transmitter and radio receiver

are depicted on the Figure 5-10.

Elastic Band Bat D Soft Belt Connector
alis fLricals Release Slot
Conductlve Pads
Back View

(a) (c)
Figure 5-9: (a) - Chest strap; (b) - Positioning the chest strap on the participants' body; (c) —
Graphical sketch of the chest strap, with the belonging elements (Adopted from device’s user

manual)
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The chest strap was placed on the participants chests (Figure 5-9b), as recommended
by the supplier. Further, the conductive gel was placed on the conductive pads, in
order to ensure a good contact with the skin at all times, during the experimental
recording (Figure 5-9c). The CNS-SWS5 is capable of recording the heart beats in the

range between 30 and 240 beats/minute.

Figure 5-10: Visual representation of the ECG monitor; left image: The receiver from the chest
belt that sends the impulses (over transmitter) to the sends the radio receiver (right image),

which sends the impulses to the recording computer via USB connection

5.4.2 Motion Capture (MoCap) Devices

54.2.1 Kinect

During the simulated assembly operation, the upper-body movements of participants
was recorded with Kinect™, which was placed in the replicated workplace, in a
position above and in front of participants (as shown in the Figure 5-3). The motion
data are interpreted in a form of a stick figure with the 10 key-points seated model
that represent the key-points of the upper body (Figure 5-11). The Kinect was
connected to the recording computer via USB connection and it is capable of
recording with the sampling frequency of 30 frames per second (fps). Other technical
characteristics of the Kinect device were already discussed in the Chapter 4.1.1. Real
time data acquisition was obtained utilizing a MMK recorder, which was adopted and
developed at the Laboratory for Multimedia Communications, Information
Technologies (IT) department of Faculty of Organizational Sciences (FON), University
of Belgrade. MMK recorder was developed in a way that it can independently record
the obtained signals, but also it can stream the signals to the lab recorder over a LAN

network (through the LSL).
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Figure 5-11: Graphical representation of the upper-body seated model and key points: R/L P —
Right/ Left Palm, R/L W — Right/ Left Whist, R/L E — Right/Left Elbow, R/L S — Right/ Left
Shoulder, H — Head, and CS — Central Shoulder

5.4.2.2 Leap Motion

Leap Motion device was used for estimation of the position of the hand key-points
during manipulation of the low loads (rubber hose and metal extensions) at high
frequency repetitions of manual assembly tasks. Leap Motion is capable of recording
120 fps images for estimation of the hand key points (as depicted on the Figure 5-
12). For that aim, the Leap Motion device was placed in the working table, below the
hands of the participants and under a transparent Plexiglas in order to prevent the
potential damage to the device. As already discussed in the Section 4.1.2, the Leap
Motion sensor is more precise than the Kinect sensor, with the limitation that it can
only record objects in close proximity. For the real-time data streaming to the lab
recorder, a stand-alone application was developed by Milo§ Milovanovi¢, member of
Laboratory of Multimedia Communications, FON, University of Belgrade. Other
technical characteristics of the Leap Motion Sensor were provided in the Section

4.1.2.
5.5 System Architecture: Data Synchronization

Section 5.4 briefly described the devices, used in the studies conducted for the aim
of the presented dissertation. However, all the devices were developed separately and
the biggest challenge was to synchronously record the different signal modalities that
are heterogeneous in both, type and sampling rate. The synchronization should be
precise down to millisecond order, since the ERP extraction requires the millisecond
precision. This would not represent a major problem in the case where a common

signal reference could be provided for each device. However, this would require that
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all the devices have separate channel for physical synchronization, which would give
rise to movement constraints for the participants in the study, thus limiting the

application of the proposed system in the naturalistic environments.

|
|
| W |

Figure 5-12: Graphical Representation of the projections of the hand key points when recorded
with the Leap Motion Controller

In order to overcome this difficulty the SCCN developed the Lab Streaming Layer (LSL)
framework (https:/ /code.google.com/p/labstreaminglavyer/, accessed on

11/12/2015). As explained in Bigdely-Shalmo et al. (2013) Gramann et al. (2014),

LSL is a real-time data collection and distribution system that allows multiple
continuous data streams as well as discrete marker timestamps to be acquired
simultaneously in the lab recorder, in an eXtensible Data Format (XDF, available at
https://code.google.com/p/xdf/, accessed on 11/12/2015). This data collection
method provides synchronous, precise recording of multi-channel, multi-stream data
that are heterogeneous in both type and sampling rate (Bigdely-Shalmo et al., 2013;

Gramann et al., 2014), and is obtained via a local area network (LAN).

LSL is capable of managing data collection in the experiments that involves
concurrent recording through different devices. The usage of the LSL drivers requires

all the recording computers to be on the same LAN network, since the LSL uses the
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User Datagram Protocol (UDP) to collect the data on one or multiple LAN computers
(Gramann et al., 2014). Finally, LSL saves the data streams with the time markers
that allows joint analysis of synchronous phenomena, as obtained from the diverse
sensors modalities (Gramann et al., 2014). This allows the real-time computation of
the obtained data streams. Moreover, it is possible to visualize the data in near-real
time during acquisition, which allows better experiment control and supervision

(Gramann et al., 2014).

As the LSL library is an open-source project, acquisition software for each device was
built in such a way to support data streaming over the LSL. Since the LSL was
designed to achieve sub-millisecond accuracy

(https:/ /code.google.com/p/labstreaminglayer/, accessed on 11/12/2015), it was

assumed to be precise enough for synchronizing EEG data with the other signal

modalities used in the presented studies.

For synchronously recording all the data streams, a lab recorder that was also
developed by SCCN was used. As stated on the webpage of the LSL project, the lab
recorder comes together with the LSL and it allows simultaneous recording of all
streams on the lab network into a single XDF file. The XDF file format was developed

simultaneously with the LSL and it supports all features of the LSL streams.

Apart from the fact that all the devices’ drivers were capable of real time streaming
the data to lab recorder, the SNAP environment, which was used for running the
experimental protocols (described in the Section 4.4), is also capable of sending the
precise time stamps of appearing stimuli from both Numbers and Arrows tasks to the
lab recorder. SNAP was built on top of the open source Panda3D game engine

(www.panda3d.org) and uses Python as its primary scripting language (Gramann et

al., 2014). SNAP allows relatively simple, script-level development of complex,
interactive experimental paradigms and it can retrieve the signals from various input
devices. This feature was used to attach the pedal through an USB port to the

recording computer, with the aim of extraction of the behavioral modality of RTs.

The overall system architecture for synchronous recording of all described streams is

graphically depicted on Figure 5-13.
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Figure 5-13: Overall system architecture design
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6.Do Micro-Breaks Increase the Attention Level of an

Assembly Worker? An ERP Study

6.1 Introduction

This Chapter is based on the published work, presented at the International
conference “Applied Human Factors and Ergonomics (AHFE 2015)”, Mijovi¢ et al.
(2015b). This study investigated the influence of micro-breaks on the attention of an

assembly worker, by utilizing wireless EEG measurements.

Manual assembly work is often highly repetitive and monotonous in nature,
as workers are repeatedly completing the same operation up to few thousand times
during the work-shift. This kind of work can lead to boredom, attention decline and
mental fatigue of the workers (Fisherl, 1993). Moreover, the extended monotonous
work is followed by decrease in motivation and morale of the worker that in the long-
term leads to mental stress, productivity decline and it can influence the end-product
quality. In even worse scenario, the workers’ attention decline could lead to error in
operating, causing work-related injuries, accidents and material damage (Kletz,
2001).

Majority of existing literature on manual assembly task is concerned with the
physical aspects of such a workplaces, rather than mental states of the operators
(Rasmussen et al., 1994). This is also reflected in studies of work/rest conditions in
the workplace, where major concerns are related to the prevention of work-related
musculoskeletal disorders (MSDs) through proposition of various physical exercises
in rest periods (Galinsky et al., 2007). However, far less attention has been dedicated

to the influence of rest breaks on cognitive state of the workers.

Understanding how the employees recover from work is important area of
research in organizational and behavioral psychology (Trougakos and Hidieg, 2009).
The influence of work vacations, weekends and end of the day activities breaks on
job performance and well-being has been largely documented, while the influence of
within the work-day breaks has received far less attention (Trougakos and Hidieg,
2009; Fritz et al., 2013). During the work days, workers spend one-third of the day

in the workplace, however they do not spend every moment engaged in the work task,
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but also short breaks occupy one part of the work-day (Fritz et al., 2013). These
breaks from the task can be structured performance-related and the ones relevant
for maintaining the workers well-being, such as lunch or rest breaks (Fritz et al.,
2013). On the other hand, there are less structured forms of shorter breaks during
the work, so called micro-breaks. The studies on micro-breaks suggest that they can
be effective in reducing fatigue effects and increase in productivity of the worker

(Trougakos and Hidieg, 2009).

Although micro-breaks are frequently proposed as a method of reducing the
strain and increasing the task engagement in work with VDU, such as data entry
work position (Galinsky et al., 2007; Morris et al., 2008), their effect should be similar
if applied in the manual assembly work, as both work position consist of sustained
work repetitiveness in static work postures. The importance of micro-breaks was
emphasized by OSHA through the following recommendation (OSHA, 2015): “High
repetition tasks or jobs that require long periods of static posture may require several,
short rest breaks (micro-breaks or rest pauses). During these breaks, users should
be encouraged to stand, stretch, and move around. This provides rest and allows the

muscles enough time to recover.”

As previously stated, the majority of literature on influence of micro-breaks
was mainly concerned with the prevention of work-related MSDs. Another path in
studying the micro-breaks was the measurement of workers’ productivity and
performance before and after taking a break. However, the main drawback of these
studies is that methods for measuring overall performance are unreliable and they
are unable to investigate underlying mental processes that are occurring before and
after the break period (Parasuraman, 2003). In order to address this problem, the
methodologies from the emerging field of neuroergonomics could be employed. As
discussed in Chapter 2, the main advantage of neuroergonomics, over classical
ergonomics approach, is that it provides precise analytical parameters depending on
the work efficiency of individuals, by directly investigating relationship between
neural and behavioral activity (Fafrowicz and Marek, 2007). In this way, it is possible
to avoid unreliable user state evaluation based on theoretical constructs, which are
describing cognitive states of the workers related to the task execution (Fafrowicz and

Marek, 2007).
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Neuroimaging technique that was used in present neuroergonomics
experimental study was wireless EEG. Specific EEG feature of interest in studying
attention is the P300 ERP component, since it has been widely documented that the
amplitude magnitude of the P300 component is directly related to the level of person’s
attention (Murata et al., 2005). The P300 component is sometimes bifurcated,
containing two sub-components P3a and P3b and although the P300 component is
generally related to attentional processing, the mechanisms that generate P3a and
P3b subcomponents significantly differ. It has been reported that the P3a component
is more related to novelty preference and low-level attentional processes, while P3b
component was found to be more related to high-level attentional processing and

processing of endogenous aspects of stimuli (Polich, 2007).

In this work the influence of the micro-breaks on the attention level of an
assembly worker was investigated, through the analysis of P300 ERP component’s
amplitude. The study was conducted in faithfully replicated workplace (as presented
in Chapter 5, Section 5.2), where participants simulated manual assembly work,
explained in Chapter 5, Section 5.3.1. The hypothesis that the higher P300
component, and especially the P3b subcomponent, amplitude would have higher

magnitude following the period of micro-break than preceding it, was tested.

6.2 Methods

6.2.1 Participants

Nine healthy subjects, all right-handed males, aged between 19 and 21 years
volunteered as participants in the study. Study was restricted to male participants
in order to exclude possible inter-gender differences and to replicate the selected job
task more faithfully. Participants had no past nor present neurological or psychiatric
conditions and were free of medication and psychoactive substances. They were
instructed not to take any alcoholic drinks on the day before and the day of
participation in the study, as well as not to drink coffee at least three hours prior
their participation in the study. All participants had normal or corrected-to-normal
vision. They have agreed to participation and signed informed consent after reading
the experiment summary. The study was approved by the Ethical committee of the

University of Kragujevac.
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6.2.2 Experimental Setup

Experimental setup was explained in detail in Chapter 5, Section 5.2

6.2.3 Experimental Procedure

Each of the participants arrived in the laboratory at 9:00 a.m. Upon carefully reading
the experiment summary and signing the informed consent for participation in the
study, participants started the 15-minute training session in order to get familiar
with the task. Finally, EEG cap and amplifier were mounted on the participants’ head
and the recording started around 9:30 a.m. Participants were seated in the
comfortable chair in front of the improvised machine. In this study, solely the
Numbers paradigm (explained in the Chapter 5, Section 5.3.2) was used. The
Numbers task was presented on the 24” screen from a distance of approximately 100
cm. The screen was height adjustable and the center of the screen was set to be in

level with participants’ eyes.

6.2.4 ERP processing

EEG analysis was performed offline using EEGLAB (Delorme and Makeig 2004)
and MATLAB (Mathworks Inc., Natick, MA). EEG data were first bandpass filtered in
the 1-35 Hz range. The EEG signals were then re-referenced to the average of Tp9
and TplO electrodes. Further, an extended Infomax Independent Component
Analysis (ICA) was used to semi-automatically attenuate contributions from eye blink
and (sometimes) muscle artifacts (De Vos et al., 2011; De Vos et al., 2010; Viola et

al., 20009).

Upon EEG data pre-processing, ERP epochs were extracted from -200 to
800ms with respect to timestamp values of “go” stimuli preceding and following “no
go” stimuli indicated by SNAP software. Baseline values were corrected by subtracting
mean values for the period from -200 to O ms from the stimuli In the ERP analysis.
The identified electrode sites of interest for the ERP analysis in this study were Fz,
Cz, CPz and Pz, as the P300 component is usually distributed and is most prominent
over the central and parieto-central scalp locations (Picton, 1992). Further, mean
grand average (GA) values of the ERPs were extracted and the magnitudes of the P3a
(250-350ms window) and P3b (350-500ms window) components were calculated,

using the mean amplitude method (Luck 2014). Finally, a repeated measures ANOVA
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was performed in SPSS, with the aim to compare the amplitude values in the P3a and

P3b window, before and after the micro-break period.

6.3 Results

The GA values of ERPs preceding and following the micro-break periods are
graphically represented on Figure 6-1. It is notable that the amplitude of the P3b
subcomponent had higher magnitude for the trials following the micro-break period
(red line), than preceding it (grey line), on all electrode sites. However, this was not

obvious in the P3a amplitude window.

P3a analysis (250-350ms): Repeated measures ANOVA with 2 within-subject
factors (electrode SITE - Fz, Cz, CPZ and Pz and TIME - before vs. after the micro-
break, i.e. ‘no-go’ trial), revealed a significant effect of SITE (F(3, 24)= 11.86, p<0.01),
but no significant effect of TIME and there was no interaction effect. Amplitudes at
Cz and Fz were significantly higher in comparison to the amplitudes at CPz and Pz

sites (p<0.095).
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Figure 6-1: ERP waveforms on Fz, Cz, CPz and PZ electrode sites. Red line — GA ERPs
following the micro-break period; Grey line — GA ERPs preceding the micro-break period. The
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P3a and P3b sub-component are depicted on the upper-left image.
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P3b analysis (350-500ms): Repeated measures ANOVA with 2 within-subject
factors (electrode SITE - Fz, Cz, CPZ and Pz and TIME - before vs. after micro-break,
i.e. ‘no-go’ trial), revealed a significant effect of TIME (F(1, 24)= 5.43, p<0.05), but
there was no significant effect of SITE and the interaction between SITE and TIME
was also not significant. The detailed comparisons revealed that the amplitudes at all
four sites were higher after the micro-break in comparison to the amplitudes before

the break (p<0.05), in P3b window (see Figure 6-2).
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Figure 6-2: Comparisons between the P3b amplitudes before (grey bars) and after (red bars)
the micro-break period (p<0.05). Error bars: +/-2 SE

6.4 Discussion

The results of this study indicated that there is a significant difference in the P3b
amplitude between the conditions preceding and following the micro-break period,
while this was not the case with the amplitude of the P3a sub-component. This
finding supports the main hypothesis and confirms that the amplitude of the P3b
sub-component, which is related to the higher-level attention processing (Polich,
2007), was affected on all electrode sites and it had higher magnitude following the
micro-break period than preceding it. On the other hand, the difference in the

amplitudes of the P3a sub-component, which reflects the low-level attention
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processes (Polich, 2007), before and after the micro-break period did not reach the

statistical significance.

Regarding the industrial work organization, one could argue about the timing
and the length of the rest periods during the shift. The most common approach of
managing the rest periods is that workers are allowed to take one long, lunch break
(approximately 30 minutes), and up to two additional break periods of shorter
duration (Dababneh et al., 2001). However, it was found that limited rest-break
opportunities are significantly related to MSD and that shortcomings in work-rest
schedules increase the likelihood of near misses and injury events (Faucett et al.,
2007). Another approach, proposed by NIOSH is that workers should be provided
with additional 5-minute breaks for each hour working and it was suggested that
modified rest break schedules have resulted in significant reductions of these
symptoms among workers, while modestly improving the productivity (Dababneh et
al., 2001; Faucet et al., 2007). Present study differs from (Dababneh et al., 2001) in
a way the participants were provided by the breaks and in total, in this study
participants had shorter total-time break period than in (Dababneh et al., 2001). In
fact, in our experimental settings participants had 50 micro-break periods (of 5s)
during the experiment, which is cumulatively, approximately 3-minute break period
for one hour of active engagement to the task. We have shown that higher frequency
of short breaks produce the higher attention level of the workers, following the break
periods. Therefore, the attention level of the workers could be maintained throughout
the workday by including frequent micro-breaks, potentially preventing the workers
injuries that are caused by attention decline, while not affecting the productivity of

the workers.

Although this study showed that frequent micro-breaks period increases the
attention level of workers engaged in assembly tasks, it should be further extended.
The future work should include the variation of the length of micro-breaks, with aim
to investigate whether the longer breaks would produce higher attention levels.
Finally, an optimal micro-break period should be defined with the aim of increasing
the attention level of the worker and improve the workers well-being, while enhancing

productivity.
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6.5 Conclusion

Recently available wireless EEG sensors provided the possibility to examine how the
brain process various stimuli in applied environments. Presented study utilized the
wireless EEG measurements in simulated assembly task, with the aim of examination
whether the frequent micro-breaks periods are influencing the attention level of the
assembly workers. The main finding was that the amplitude of P3b ERP sub-
component, which is directly related to the high-level attention processing, had
higher magnitude following than preceding the micro-break period. The results
indicate that the workers on manual assembly line should have frequent short-breaks
in order to maintain their attention level during the work-shift. In this way, the
attention decline and boredom of the workers could be suppressed, improving the
overall assembly workers’ well-being. Finally, the introduction of frequent micro-
break periods in regular work routine could yield less frequent occurrence of the

work-related injuries, which could be caused by the attention decline of the workers.
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7.Benefits of Instructed Responding in Manual

Assembly Tasks: An ERP Approach

7.1 Introduction

This Chapter is based on the work of Mijovic et al. (2016b). The main notion is that
the majority of neuroergonomics studies are focused mainly on investigating the
interaction between operators’ and automated systems; while far less attention has
been dedicated to the investigation of brain processes in more traditional workplaces,

such as manual assembly, which are still ubiquitous in industry.

The aim of this paper is the investigation of assemblers’ mental states, by utilizing
ERPs in a realistically replicated workplace. Neuroergonomics governs that overt
performance measurements are unreliable (Parasaruman, 2003), since they do not
provide the possibility for timely investigation of the underlying covert cognitive
processes during everyday tasks. To get better insights into the time course of the
underlying attention processes engaged in manual assembly operation, we selected
two tasks in which we triggered goal-directed actions of workers by presenting them
either digits (in one) or arrows (in the other task) prior initiating the operation. In this
way we wanted to elicit the P300 ERP component (Also called P3 or P3b), which is
represented by the positive ERP voltage deflection that usually appears between 300
and 500ms after appearance of the task-relevant stimuli (Verleger et al., 2005; Polich
and Kok 1995). The P300 component is often used to identify the depth of cognitive
information processing and its amplitude and latency are considered to be related to

the human attention level (De Vos et al. 2014; Johnson 1998; Polich 2007).

The P300 complex is the most prominent over the midline scalp sites (Polich 2007)
and it is among the most prominent ERP components (Verleger et al., 2014), thus
being one of the most studied components of the human ERP. However, it is still
argued about what brain functions the P300 component represents (briefly
summarized in the Verleger et al.,, 2014). One influential view is that the P300
component can be explained through the context updating hypothesis that was
proposed by Donchin (1981) and which governs that the P3 reflects the updating of
working memory that is related with task-relevant and unexpected events. The

context updating theory assumes that the mental process that elicit the P3
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component reflects a revision of the model of the environment rather than it serves
for organizing response to the eliciting stimulus (Verleger et al., 2005). In other words,
it is assumed that following an initial sensory processing, an attention-related
process evaluates the presentation of the previous event in working memory and if a
new stimulus in a train of standard stimuli is detected, the attention-related process
updates, which is followed by production of the P300 component (Polich, 2007).
However, we have also witnessed arguments against the context updating theory
(Verleger et al., 2005; Verleger et al., 2014). In fact, Verleger et al. (2005) proposed a
new hypothesis in which they stated that the P300 component is related both to
stimuli processing and organizing the response. In order to prove this hypothesis,
Verleger et al. (2005) compared the P3 amplitude in stimulus- and response-locked
ERPs and they found that both P3 amplitudes were comparable. Therefore, it was
confirmed that P300 amplitude does not reflects just the simple reaction to stimulus
change. Rather, P300 reflects a process that mediates between perceptual analysis
and response (Verleger et al., 2005), i.e. it is related to the organization of the

response and it depends on the stimulus-response links (Verleger et al., 2014).

Based on these findings, the present study investigated whether and how the neural
correlates of goal-directed actions would differ if the operators were requested to
initiate the simulated assembly operation spontaneously (upon seeing a digit), as
opposed to the condition where participants were instructed with which hand to
commence the operation (upon seeing an arrow). In the spontaneous condition (the
Numbers task), we adopted the stimuli from the original SART paradigm that is a
simple ‘go/no-go’ task, which consists of consecutively presenting digits from ‘1’ to
‘9’ and participants are required to give the speeded response on all stimuli, with the
exception of digit '3’ (Robertson et al., 1997). The main difference between the original
SART and the Numbers paradigm (used in our study) is that the digits in Numbers
are randomized. Further, in the original SART paradigm it is requested that
participants provide the speeded response with the index finger upon the stimulus
presentation. However, this would impede the simulation of the real working
operation, since it would require an additional, task unrelated operation from
participants. Instead, in the Numbers paradigm, participants were instructed to
initiate the assembly operation as soon as the visual (target) stimulus appeared on

the screen, with whichever hand they felt more comfortable (the assembly operation
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is explained in detail in Section 2.3). For the instructed responding (the Arrows) task,
we adopted the stimuli and procedures from the Donkers and Boxtel (2004). The
Arrows task is essentially the choice reaction task, where the arrows pointing to the
left and right appear on the screen; the white arrows represent the target (‘go))
condition, while the red arrows represent the ‘no-go’ stimulus. The main difference
between the Numbers and Arrows tasks was that in the Numbers task participants
could freely choose the hand with which they would initiate the assembly operation,
while in the Arrows task, participants were instructed to commence each operation
with the hand that corresponds to the direction in which the white arrow on the
screen was pointing. An important notion is not only the simple stimuli difference
between the tasks was varied (digit vs. arrow), but also the informational value of
those stimuli: the Arrows task arguably requires stimulus-response mapping, which
in turn requires more cognitive evaluation, which consequently induces higher-level
attentional processing than in simple ‘go/no-go’ task. In both, the task specific and
spontaneous condition, the visual stimuli (digits and arrows) appeared in the center

of the screen that was placed in front of the participants.

We expected attention, when assessed through the P300 amplitude, to be more
enhanced in the instructed responding (Arrows) task, compared to the one where
participants could initiate the assembly operation upon seeing the task unspecific
cue (Numbers task). Further, we wanted to investigate whether the difference in the
task condition would also influence the reaction times (RTs), as the performance of
the participant’s is also important, since this study simulates the naturalistic
assembly task replicated from the industry. In other words, we wanted to investigate
whether the participants would be slower in the case when they are instructed with
which hand hey should start the assembly operation, as compared to the condition
when they can spontaneously initiate the assembly operation with whichever hand

they prefer.

7.2 Methods

7.2.1 Participants

Seventeen healthy subjects, from which one was left-handed, aged between 19 and

21 years volunteered as participants in the study. Due to abnormalities in the
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recording three subjects were excluded from further analysis, leaving fourteen
participants. The study was restricted to male participants both to exclude possible
inter-gender differences and to replicate the selected job task more faithfully, since
in company that supported this research only male population occupy the specific
workplace under study. Participants did not report any past or present neurological
or psychiatric conditions and were free of medication and psychoactive substances.
They were instructed not to take any alcoholic drinks prior to, nor on the day of
participation in the study. All participants had normal or corrected-to-normal vision.
They agreed to participate in the study and signed informed consent after reading the
experiment summary in accordance with the Declaration of Helsinki. The Ethical
Committee of the University of Kragujevac approved the study and procedures for the

participants.

7.2.2 Experimental Setup

Experimental setup was explained in detail in Chapter 4, Section 4.2

7.2.3 Experimental Procedure

Each of the participants arrived in the laboratory at 9:00 a.m. Upon carefully reading
the experiment summary and signing the informed consent for participation in the
study, participants started the 15-minute training session in order to get familiar
with the task. Finally, EEG cap and amplifier were mounted on the participants’ head
and the recording started around 9:30 a.m. Participants were seated in the
comfortable chair in front of the improvised machine. In this study, both, the
Numbers and the Arrows paradigm (explained in the Chapter 4, Section 4.3.2) were
used in balanced order, and the participants had a 15-minutes break between the
tasks. Both tasks were presented on the 24” screen from a distance of approximately
100 cm. The screen was height adjustable and the center of the screen was set to be

in level with participants’ eyes.

7.2.4 ERP Processing

EEG signal processing was performed offline using EEGLAB (Delorme and Makeig,
2004) and MATLAB (Mathworks Inc., Natick, MA). EEG data were first bandpass
filtered in the 1-35 Hz range, following which the signals were re-referenced to the

average of the mastoid channels (Tp9 and Tpl0). Further, an extended infomax
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Independent Component Analysis (ICA) was used to semi-automatically attenuate
contributions from eye blink and (sometimes) muscle artifacts (as explained in Viola
et al., 2009; De Vos et al., 2010; De Vos et al., 2011). After this data preprocessing,
ERP epochs were extracted from -200 to 800 ms with respect to timestamp values of
‘o’ and ‘no-go’ stimuli indicated by the SNAP software. Baseline values were
corrected by subtracting mean values for the period from -200 to O ms from the
stimuli. The identified electrode sites of interest for the ERP analysis in this study

were Fz, Cz, CPz and Pz.

Following the ERP extraction, the mean grand average (GA) ERPs were
calculated. For the ‘go’ condition, the GA ERP was calculated for the ERPs that
preceded the ‘no-go’ condition. The P300 amplitude was calculated for both ‘go’ and
‘no-go’ conditions and for each experimental condition, using mean amplitude
measure (Luck, 2014) in the time window from 230 to 450 ms, with regard to the
time stamps of the stimuli. Finally, the statistical analysis on the obtained results

was carried out.

7.2.5 Reaction Times

As already stated in Section 5.2, the experimental design did not allow subjects to
react with the button press upon seeing the visual ‘go’ stimulus. Therefore, the
reaction time (RT) could not be measured in the traditional fashion, as the time
elapsed between the stimulus presentation and the response by the participants
(usually executed with the right index finger). Instead, the RTs here were measured
as the time elapsed between the stimulus presentation (step 1) and the pedal press
(step 6 from the 5.3.1 section, also depicted on the Figure 5-4). The pedal used in the
study was actually a modified mouse button and it was connected to the recording
computer via USB connection. As LSL is capable of real-time recording of the
timestamps of the mouse button press, it enabled us to gather precise information
regarding the time when pedal was pressed. This allows the calculation of RTs, as
the difference between timestamps from stimulus presentation (operation initiation)

and the beginning of the machine simulated crimping process.
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7.2.6 Error Processing

The errors of omission were classified as the errors when participants omitted the
appearance of ‘go’ stimuli. The commission errors processing was challenging, since
our task did not require speeded button press and therefore, the errors of commission
were difficult to interpret. In fact, the most obvious classification of commission errors
would be when participants completely execute the simulated operation upon
appearance of the ‘no-go’ stimuli. However, it is important to note that participants
sometimes made slight movements upon appearance of the no-go’ stimuli (in sense
that they showed intention to initiate the action) and then they inhibited the response
upon realization that it was a ‘no-go’ stimuli. This kind of errors we classified as the
near-misses. The quantification of the near misses and commission errors was
conducted by the experimenters in the room, but also in an off-line analysis by

replaying the videos recorded with the RGB camera during the experiment.

7.2.7 Statistical Analysis

The statistical analysis was performed using IBM SPSS software. The ERPs used for
statistical analysis included all ERPs related to the “no-go” condition and 50 ERPs
related to “go” preceding the “no-go” condition. The 4x2x2x2x2 repeated measures
ANOVA was conducted with SITE (Fz, Cz, CPz and Pz) and Period of measurement
(first vs second half) as within subject factors and Task (Arrow vs SART), ‘g¢o/no-go’
and Order of presentation (first vs second) as between subject factors, respectively.
Additionally, the 2x2x2 ANOVA comparing reaction times (RTs) across Period of
measurement (first vs second half) as within subject factors and Task (Arrow vs
Numbers) and Order of presentation (first vs second) was conducted. Finally, the
2x2x2 ANOVA was performed, comparing commission errors and near misses across
Period of measurement (first vs second half) as within subject factors and Task (Arrow
vs Numbers) and Order of presentation (first vs second). Greenhouse-Geissser

corrections (FG) were applied where necessary.
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7.3 Results

7.3.1 ERP Results

The GA ERPs for each task (Arrows and Numbers), each condition (‘go/no-go’) and
each electrode site under study (Fz, Cz, CPz and Pz) are depicted on Figure 7-1.
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Figure 7-1: Graphical representation of the GA ERPs for each task and each electrode location
under study. The black line represents the ‘go’ condition, while the grey line depicts the GA
ERPs for the ‘no-go’ condition.

The ERPs differed depending on the condition (Go/No-Go: F(1,96)=25.74, p<.000,
n=0.21), the task (Task: F(1, 96)=13.43, p<.000, n=.123), the order of presentation
(Order of presentation: F(1,96)=10.75, p<.001, n=.10) and across the scalp (SITE:
F(3,94)=11.41, p<.000, n=0.11). Namely, the P300 amplitudes elicited for ‘go’ trials
were higher than for ‘no-go’ trials (M =5.73, sd = 4.19; M =2.25, sd = 3.85,
respectively). Further, the Arrow task produced higher amplitudes in comparison to
Numbers (M =5.24, sd = 4.33; M =2.73, sd =4.07, respectively). The P300 amplitudes
elicited with regard to the Order of presentation demonstrated higher amplitudes for
whichever task was presented first in comparison to second task (M =5.11, sd = 4.28;

M =2.86, sd = 4.19, respectively). Finally, amplitudes elicited at Pz were significantly
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higher than the amplitudes at the other three sites and amplitudes at CPz site were
higher than at Cz and Fz sites at the p<.05 level. All the other comparisons were

significant in the same direction apart from the Fz-Cz difference.

Figure 7-2 depicts the GA ERPs elicited over all four electrode sites under study for

the ‘go’ condition.
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Figure 7-2: The GA ERPs elicited for ‘go’ condition in all four experimental conditions. ERPs
elicited for The Numbers task are represented with the grey color, while the ERPs elicited in
the Arrows task are depicted with the black color. The full line represents that the task was

presented as a first task and the dashed line if the task was presented as second task.

Besides these main effects, we observed a significant two-way interaction effect
between SITE and Order of presentation (F(3,94)=5.49, p=.014, n=.05), a significant
two-way interaction effect between Task and Order of presentation (F(3,94)=9.4,
p=.003, n=.09), as well as a three-way interaction between SITE, Task and Order of
presentation (F(3,94)=6.78, p<.006, n=0.07). The amplitudes were smaller for the

Numbers task only when it was presented as a second task and this was true at Cz,
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CPz and Pz, but not for the Fz electrode (all post-comparisons were significant at

p<.09).

The P300 amplitude differences for all four sites and depending on the task

representation order are presented in Figure 7-3.
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Figure 7-3: The amplitude values for all four-electrode sites and for all experimental
conditions. The black color depicts the Arrows task, while the Numbers task is represented

with the grey color.

7.3.2 Reaction Times Results

The 2x2x2 ANOVA comparing reaction times (RTs) across Period of measurement
(first vs second half) as within subject factors and Task (Arrow vs SART) and Order

of presentation (first vs second) revealed neither significant main effects, nor

interaction effects.
97




7.3.3 Errors

The participants did not make any omission errors. Regarding commission errors,
across all the participants and all the experimental conditions, we observed only
seven errors. Statistical analysis revealed neither main effects nor interactions in this
case. However, regarding near-misses, the ANOVA revealed only a significant effect
of task (f(1,94) =17.26, p<.01) with the participants making more near-misses in

Numbers compared to the Arrows task.
7.4 Discussion

The present study investigated whether operators’ attention is enhanced when they
are instructed with which hand to initiate the manual assembly operation, as
compared to spontaneous and free choice of preferred hand. The attention was
assessed through the P300 amplitude, as it is widely accepted that the P300
amplitude is positively related to the human level of attention (Ford et al., 1994,
Polich 2007; De Vos et al., 2014). For this aim we simulated a manual assembly
operation, where we provided the participants with two distinct psychological tasks

(Numbers and Arrows) simultaneously with the simulated operation.

The P300 components’ amplitude was significantly higher in magnitude for the
frequent ‘go’ (target), than for the infrequent ‘no-go’ condition (as presented on the
Figure 3). This finding is in contrast to the majority of previously reported studies
where an infrequent target condition elicits a higher magnitude of the P300
amplitude, since the participants are usually required to note the occurrence of
infrequent targets by button press or by silent counting (Struber and Polich, 2002).
On the other hand, in our task target stimuli were the frequent ones, as the continuity
of operation in manual assembly is essential, while the participants were instructed
just to sit still and with no actions during the infrequent ‘no-go’ condition. As such,
it is not surprising that the lower magnitude of the P300 amplitude were elicited in
infrequent non-target condition, as passive stimulus processing induces smaller
P300 amplitudes than active tasks (Polich 2007). This was also supported by the
results from the study of Potts et al. (2001), where they reported that the P300
amplitude was larger in frequent ‘go’ condition as compared to rare non-target

condition in the task where the ratio between ‘go’ and ‘no-go’ condition was 80/20.
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Moreover, it was found that the inter-stimulus interval (ISI) between target stimuli
influences the P300 amplitude, in sense that short ISI lead to decrease in amplitude,
while relatively long ISIs elicit the higher P300 amplitude, which is the case even in
the single-stimulus paradigm (Struber and Polich 2002; Polich 2007). This was the
case also in our study, since the ISI was relatively long (approximately 11s) and we
believe that it was suitable for eliciting the P300 amplitude even in the frequent target

condition.

The main finding of the present study is that the P300 amplitude was conclusively
higher in magnitude when participants were instructed with which hand to initiate
the simulated assembly operation, as compared to the case when participants could
freely choose the preferred hand for the operation initiation. This may not be
surprising, since in the choice reaction task (Arrows) participants were subjected to
slightly higher demands of the incoming stimuli evaluation, as they were un-aware
of the direction in which the white arrow stimuli would point. On the other hand, the
digit stimulus carries considerably lower information, as participants are required
just to make distinction whether it is a ‘go’ or ‘no-go’ stimuli and to perform their
action accordingly, i.e. the participants may stop evaluating the content of the stimuli
after some time. Therefore, the response selection requirements during the Arrows
task are substantially higher than in Numbers task, which may lead to increased
P300 amplitude in condition which required instructed responding of the participants
(Verleger et al., 2005; Verleger et al., 2014). Interestingly, even though it was expected
that the RTs could differ between the two tasks, this was not the case. The number
of commission errors was relatively low and it did not differ between the tasks.
However, there was significantly higher amount of near-misses in the Numbers than
in the Arrows task. The fact that there was larger number of near-misses in the
Numbers task may be expected, as the Arrows task imposes a higher workload to the
participants, due to the higher response selection requirements, and as it was
previously reported, the errors and mental workload are related according to the U-
shaped curve (Desmond and Hoyes, 1996). From all discussed above, it may be
proposed that the workers on repetitive and monotonous assembly task should not
receive information solely on whether they should initiate the operation or not, but it
should be beneficial if they would receive information that carries slightly higher

cognitive demands. In fact, the task that consisted of the stimuli with the higher
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cognitive demands induced the higher P300 amplitude, which may be related to the
attention of the worker for the task in hand. Another important notion is that the
difference between the task conditions was not visible in the measured RTs, which
may constitute one of the important findings of the present study: that the overt
performance based measures in a naturalistic environment are not accurate enough,
which is in line with one of the main postulate of the Neuroergonomics (Parasuraman
2003). This study supports the notion of the Parasuraman (2003) that the

measurement of covert cognitive processes should be adopted in HF /E studies.

Although we showed that the Arrows task produced a higher P300 amplitude than
the Numbers task, one could argue about the selection of the tasks, as the stimuli
type between task conditions significantly differ (digits vs. arrows). The main reason
for not investigating the difference between instructed and non-instructed condition
with the same type of stimuli was the avoidance of the interference effect (Pashler
1994). In fact, if only stimuli from Numbers task were used and dedicated the
directions to specific digits in hand instructing task (e.g. odd numbers means left and
even numbers right hand first), it would be highly likely that the memory would
strongly influence the attention processing. On the other hand, if we only used the
Arrows stimuli type, the undesired bias would be included in the condition when
participants could initiate the operation with their preferred hand. An additional
concern is whether the two distinct psychological tests trigger different attentional
resources, given that they are composed of different stimulus types and that the
Arrows task alternates the response hand, while in the Numbers task participants
could respond with whichever hand they preferred. The answer to this doubt could
be found in premotor theory of attention (Rizzolatiet al., 1994), which governs that
the attention orienting processes are triggered during unimanual response
preparation and that the orienting processes are assumed to be equivalent to the
processes elicited during instructed endogenous shifts of spatial attention (Eimler et
al., 2005). Moreover, Ranzini et al. (2009) also used the tasks with Arabic digits and
Arrows and they demonstrated that processes evoked by these cues are alike and
that the volitional and non-volitional attentional shifts rely on the same fronto-
parietal brain networks. Thus, both Numbers and Arrows tasks should evoke the
same cognitive resources of attention, which gives the legitimacy to the choice of the

tasks used in this study.
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Another interesting finding from this study could be implemented in job rotation
strategy. Job rotations in assembly lines are often proposed as method for reducing
the monotony of the task, thus keeping the workers more focused (Michalos et al.,
2010Db). In fact we found that the lowest P300 amplitude values were obtained when
the numbers (less demanding task) was presented as a second task, i.e. the data
revealed that if a less demanding task follows a more demanding task, the
participants’ attention was lowered. Thus, we propose that job rotations on assembly
tasks should be organized in such a way to avoid that the more demanding task is
followed by the task which is more monotonous in nature. However, this notion

should be investigated thoroughly in future studies.

One of the limitations of the present study is that it was conducted in a simulated
working environment, instead of a real factory setting. The main reason for this was
usage of the wet-electrode EEG recording system, which is still uncomfortable for
application in actual industrial environments. Nevertheless, we replicated both the
spatial dimensions and ambient conditions and performed the wearable EEG study,
demonstrating its applicability for the investigation of covert cognitive processes in
naturalistic environments for HF/E studies. Another Ilimitation is that,
simultaneously with the simulated operation, we used two distinct psychological
tests, with the aim of eliciting the P300 ERP component. Although it could be argued
that psychological tests could interfere with the simulated operation, an important
notion is that the assembly workers should be provided with timely information
regarding the performed operation (Stork and Schubo 2010). Therefore, we believe
that this modification did not significantly differ from the actual assembly operation
in industrial environments. Moreover, in naturalistic settings it is usually hard to
isolate and analyze the specific cognitive process, since they should first be evoked
and co-occurring cognitive factors should be isolated (Bulling and Zander 2014).
Thus, this modification in the information presentation to the participants was
necessary in order to elicit the anticipated P300 ERP component during the simulated
assembly operation. Unfortunately, the present study is unable to compare brain
responses between self-paced (as in this specific workplace) and externally paced
work routines that we used in our study. This issue should be addressed in future

studies.
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The present study demonstrated that wearable EEG recording could be beneficial for
task design in HF /E studies. Future studies should investigate whether the reported
findings also hold for similar job positions, which are monotonous and repetitive in
nature but require continuous focus of the worker on the industrial task (e.g. quality
control tasks). Although the present study utilized wearable EEG in a faithfully
replicated workplace environment, it seems that it is just a matter of time until EEG
systems will be willingly accepted for everyday use (Van Erp et al., 2012; Mihajlovic¢
et al., 2015). This could even lead to the application of passive brain-computer
interfaces, which could be used for real-time assessment of the cognitive user states
in industrial environments (Zander and Kothe, 2011). Nevertheless, the fact that it is
nowadays possible to investigate brain dynamics during natural movements (without
imposing movements constraints) of the recorded individual brings us a step closer
to the guiding principle of the neuroergonomics, that is, to investigate how the brain
carries out the complex tasks of everyday life and not just simplified and artificial

tasks in the laboratory settings (Parasuraman and Rizzo, 2006).

7.5 Conclusion

Comparing monotonous (‘go/no-go’) Numbers task to the choice-reaction (Arrows)
task, which instructs the participants with which hand to initiate the assembly
operation, we found that the latter was more suitable to preserve participants'
attention during the externally paced assembly task. This finding was achieved
through investigation of the ERP waveform, where it was found that the P300
amplitude, which is related to the level of attention, was enhanced in the task that
instructed the participants with which hand to initiate the simulated assembly
operation. Regardless of the order of presentation, the P300 amplitudes were
comparably high, whereas, the drop of attention was evident in the Numbers when
presented as a second task. Our findings suggest that in monotonous assembly
tasks, instructed responding, or a similar method of engagement, should be imposed
on operators as it enhances their attention level. Finally, stemming from the notion
that a drastic drop in P300 components’ amplitude was notable when the Numbers
task was performed as second, we propose that job rotations on the assembly line
should be organized in such a way that the demanding task should not be followed

by the more monotonous one.
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8.Towards Continuous and Real-Time Attention
Monitoring at Work: Reaction Time versus Brain

Response

8.1 Introduction

This chapter is based on the published work (Mijovic et al., 2016a) and it is concerned
with the Continuous and objective measurement of the operators’ attention state,
which still represents a major challenge in the ergonomics research. Studies in the
HF/E regarding mental, cognitive and emotional functions are perceived through
theoretical constructs and are still dependent on behavioral indicators (Farfowicz and
Marek 2007), subjective questionnaires and measurements of operators’ overall
performance (Parasaruman 2003). However, as mentioned in previous chapters,
these methods are often unreliable (Lehto, and Landry 2012; Parasaruman and Rizzo
2008; Parasaruman 2003; Simpson et al., 2005). Additionally, they are unable to
provide a real-time and continuous performance and attention measurement at work
places (Jagannath and Balasubramanian 2014), where the continuous focus is
essential (Jung et al., 1997). On the other hand, wearable EEG provides the
possibility of continuous and objective assessment of the attention level of the
operators, which may provide a new paradigm in ergonomics research for human
performance monitoring. In this way, unreliable user state evaluation based on
theoretical constructs, which are mostly describing cognitive states of the workers

related to the task execution, can be avoided (Fafrovicz and Marek 2007).

Throughout the industrial history, studies of human performance in assembly
tasks were mainly concerned with postures of the operators (Fish et al., 1997; Li and
Haslegrave 1999; Rasmussen et al., 1994), which are still one of the main causes for
work related musculoskeletal disorders (Leider et al., 2015). However, far less
attention has been dedicated to the cognitive and perceptual factors that can cause
errors in operating (Fish et al.1997). For example, the decrease in attention often
precedes human error (Arthur et al., 1991; Kletz 2001; Reason 1990; Wiegmann and
Shappell 2012; Wallace and Vodanovich 2003), and therefore, its timely detection
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could help avoidance of dangerous situations including workers injuries, material

damage and even accidents with casualties.

EEG provides the possibility to both timely and objectively detect the critical
behavior of humans (e.g. drops in attention, error, etc.) and it has been confirmed as
a reliable tool in estimating ones' cognitive state (Klimesch et al., 1998; Luck, et al.,
2000; Murata et al., 2005; Yamada 1998). Analysis of the ERPs, extracted from
continuous EEG recording, represents commonly employed method in evaluating
ones’ neural activity (Hohnsbein et al., 1998). Another modality which can provide a
continuous-like assessment of human attention level is a behavioural measure of the
reaction times (RTs, [Larue et al.,, 2010; Sternberg 1969]). RT represents a time
interval from the indicated start of operation (stimulation), until the moment of the
action initiation and the main reason for wide usage of RT measurements is that they
are easy to obtain and simple to interpret (Salthouse and Hedden 2002). However,
the major drawback of experiments involving RT is that they usually consist of a
stimulus followed by the response, without direct possibility to observe the mental

processing that occurs between stimuli (Luck et al., 2000; Young and Stanton 2007).

In this study the propagation of the P300 ERP component peak amplitude and
latency was investigated in order to assess the operators’ level of attention, utilizing
recently available mobile EEG equipment that did not alter the working process and
enabled a ‘truly unobtrusive’ paradigm. In parallel, the propagation of behavioral
component (RT) was examined. This study tested the hypothesis that the decreased
level of attention, reflected in the reduced P300 amplitude, would also be followed by
the longer duration of RT, as the operator would need more time to complete the
operation, and vice versa. Further, the relationship between the RTs and P300 peak
latency was examined, in order to investigate whether the RT duration would

influence the latency of the P300 peak.

8.2 Materials and Methods

8.2.1 Participants

Fourteen healthy subjects, all right-handed and white skin color males, of age
between 19 and 21 years volunteered as participants in the study. Two participants

were excluded from further analysis, due to abnormalities during the recording.
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Participants had no past or present neurological or psychiatric conditions and were
free of medication and psychoactive substances. They have agreed to participation
and signed informed consent after reading the experiment summary. The Ethical
committee of the Medical Faculty (University of Kragujevac) approved the study and

procedures for the participants.

8.2.2 Experimental Task

Experimental Task was explained in detail in the Chapter 5, Section 5.3.1.

8.2.3 Preparation and Experimental Procedure

Experimental procedure was explained in detail in the Chapter 5, Section 5.3.2. An
important notion here is that in this study, solely the Numbers task was used, for

the aim of eliciting the P300 ERP component.

8.2.4 Data Analysis

The RTs were calculated as the difference between timestamps from the operation
initiation and actual beginning of the crimping process. In other words, RTs are here
regarded as the time elapsed between the stimulus presentation (step 1) and the
moment when participant presses the pedal (step 6), as indicated in Figure 4-4

(Chapter 4, Section 4.3.1).

EEG analysis was performed offline using EEGLAB (Delorme and Makeig 2004)
and MATLAB (Mathworks Inc., Natick, MA). EEG data were first bandpass filtered in
the 1-35 Hz range. The EEG signals were then re-referenced to the average of Tp9
and TplO electrodes. Further, an extended Infomax Independent Component
Analysis (ICA) was used to semi-automatically attenuate contributions from eye blink
and (sometimes) muscle artifacts (as explained in De Vos et al. [2011]; De Vos et al.
[2010]; Viola et al. [2009]). ERP epochs were extracted from continuous EEG signal
in the time range -200 to 800 ms with respect to timestamp values of stimuli. Baseline
values were corrected by subtracting mean values for the period from -200 to Oms
from the stimuli. The identified electrode sites of interest for the ERP analysis in this
study were Fz, Cz, CPz and Pz, as the P300 component is usually distributed and is

most prominent over the central and parieto-central scalp locations (Picton 1992).

105




8.2.5 ERP Processing — P300 Amplitudes and Latencies

In the ERP analysis, firstly the mean grand average (GA) values of the ERPs for the
‘g0’ and ‘no-go’ conditions were calculated. The GA methodology provides only the
single value for the whole measurement period, thus the continuous evaluation of
the ERP components was impossible. On the other hand, single trials ERPs could be
used for the continuous evaluation of ERP components, but they would have low
signal-to-noise (SNR) ratio. However, it has been reported that good quality ERPs
could be obtained with as few as 11-repeated stimulus trials (Humphrey and Kramer
1994; Prinzel et al., 2003). Therefore, in order to create a trade-off between reliability
and temporal resolution we decided to employ a moving window on single trial ERPs
elicited by ‘go’ condition, averaging the last 15 trials for selected electrodes. The usage
of this one-trial-step overlapping window left the total of 435 averaged ERPs for

further analysis.

The P300 component obtained in this study was bifurcated containing two
subcomponents, P3a and P3b. Whilst the P3a is more frontally distributed, the P3b
is more prominent in the centro-parietal region (Polich, 2007). However, their latency
vary depending on the stimulus events which elicit them, nature of task, population
of participants included in the study, etc. In order to quantify and examine the
propagation of P3a and P3b component amplitude and latency for 435 averaged
ERPs, the following strategy was used: for the P3a and P3b sub-components, the
latency of the maximum peak on the grand averaged ERPs for each subject was found
and the 100ms interval window surrounding the peak was chosen for the calculation
of the amplitude, utilizing mean peak amplitude method proposed by Luck (2014).
Similarly, the latency value on each of the 435 averaged ERPs was calculated using

peak latency measures (Luck, 2014).

8.2.6 Comparison of ERP and RT

Similarly, to the ERP analysis, the data for RTs were also averaged using a 15 trials
moving-window, thus allowing examination of the RTs propagation during the task.
This provided continuous-like time series of RTs, together with the P3a and P3b
amplitude and latency values, further enabling the observation of common trends
between these two modalities of attention monitoring. In this way it was possible to
examine the correlation between the values of the P3a and P3b amplitudes and RTs.
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8.2.7 Statistical Analysis

In order to examine the difference of the GA ERPs between ‘go’ and ‘no-go’ condition,
a paired t-test was performed. The ERPs used for ‘go/no-go’ comparison included all
ERPs related to the ‘no-go’ condition and 50 ERPs related to ‘go’ stimuli preceding the
‘no-go’ condition. To identify latencies with significant difference of go and no-go
stimuli, mean amplitude values of GA ERPs across subjects were extracted over fixed
20ms time windows. ‘Windows of interest’ were defined as follows: where successive
bins achieved statistical significance, one after first, and one before last bin in this
significant run’ respectfully marked its beginning and ending. That is to say, times
were treated as the windows of interest only if neighboring 20 ms bins were also
significant (p < .05). After identification of these windows, mean amplitudes across
the window were computed and further analysis was conducted. Due to multiple
comparisons, Bonferoni corrections were applied where necessary and the reported

pattern of data did not change.

The correlation between the values of the RTs and P3a and P3b peak
amplitudes and latencies, were statistically analyzed: vectors of P3a and P3b mean
amplitude/latency values, calculated from the 435 values of the averaged 15 ERPs,
and analogous values of the RTs were fed to the IBM SPSS software and Pearson

correlation coefficients were extracted.

8.3 Results

8.3.1 EEG Results

ERPs were successfully extracted confirming the validity of the setup and accurate
synchronization of the stimuli-inferred marking of EEG stream. Figure 8-1 depicts
GA ERPs for the go (full line) and no-go (dotted line) tasks for Fz, Cz, CPz and Pz
electrode sites. The P3a and P3b values in the ‘go’ condition were significantly higher
than in ‘no-go’ condition (p< .05), while the more prominent N2 component was
elicited over ‘no-go’ trials (p< .05), as marked on the upper-left image of Figure 3.
Further, the P300 peak elicited in our task was bifurcated, containing its both sub-

components (P3a and P3b), as shown on the upper-left image of Figure 8-1.
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Figure 8-1: Grand average ERP waveform for ‘go’ (full line) and ‘no-go’ (dotted line) conditions
across electrode sites under study. The N2, P3a and P3b ERP components are indicated on the

upper left image.

The P3a and P3b components were consistent throughout the trials, which is
represented in the colour maps, on the upper trace of Figure 8-2 (a, c, d and f), that
represents an example of data obtained from subject 11 (Table 8-1). The lower traces
of Figure 8-2 (a, c, d and {) represent the average ERP waveform on the single subject
level, which confirmed that our task paradigm was suitable for electing the P3a and
P3b ERP waveforms for ‘go’ conditions in simulated workplace environment.
Additionally, Figure 8-2b and 8-2e represent the topographic maps and the

distribution of the P3a and P3b sub-components across the scalp locations.
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Figure 8-2: The average ERP waveforms, from subject 11 (Table 1) and for 450 go trials (a, c,
d, f - lower traces); P3a and P3b sub components of bifurcated P300 peak are indicated in the
lower trace of image (a); the amplitudes were calculated for the window between the full lines
for both P3a and P3b (as marked on images a, b, d, f). Further, the topography of P3a and P3b

components are represented on images (b) and (e).

In order to visualize the correlations between the RTs and P300 ERP
component, the trials were sorted according to the RTs in ascending order.
Corresponding ERPs were also rearranged according to the sorted RTs. These results
are shown in Figure 8-3, where upper images represent results for a participant
having the pronounced negative correlation (subject 11 from Table 3) and the lower
images shows results for a subject with the positive correlation (subject 7, from Table
8-1). Lower traces of the images (both, a and b) represent the average ERP waveforms.
Color map represent 435 averaged ERP amplitudes across trials (the ERP data were
additionally smoothed for the better visualization). In the upper trace of the left
images, the averaged RTs are presented as the black line (its axis portrayed on the
upper side). In these unsorted RTs the intra-individual RT variability across trials
can be observed. Similarly, the intra-individual variability of the P300 component
amplitude is presented in the color map of the left images of the Figure 8-3. The effect

of correlation sign becomes visible after sorting the ERPs according to ascending RTs
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(Figure 8-3, right upper traces of the images). It is visible that in case of negative
correlation, P300 amplitude (especially P3b) increases as RT is decreasing (the arrow
on the right shows the direction of increasing P300 amplitude values, and thus, the
correlation "sign"). Analogously, for the subject that shows positive correlation this
trend is opposite, also indicated for visualization purposes by a lower arrow on the
right.
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Figure 8-3: Comparison of two subjects having negative (upper) and positive (lower image)
correlation between P300 amplitude and RTs. Respective left sides show
(averaged/ smoothed) ERPs and RTs ordered as recorded during the measurements, while the
right sides depict ERP and RT values sorted with respect to ascending RTs. Axes indicate the
trial number as well as ERP latency, but also the value of RTs. Arrows on the right side

indicate the direction of increasing P300b components (corresponding to correlation sign).

Finally, the time series of the 435-averaged P3b components' mean amplitudes

(upper panel of the Figure 8-4) and the corresponding averaged time series of the RTs
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(lower panel of the Figure 8-4) are presented for the visualization of the effect of
variation of the P3b ERP component and RTs. Vertical full lines indicate moments
when P3b mean amplitude starts dropping, eventually reaching its lower peak
(depicted with dashed lines). Red arrows on the top of the Figure 8-4 represent the
direction of the decrease in P300 amplitude. It is notable that when the P3b amplitude

is decreasing, opposite trend in RT can be observed.
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Figure 8-4: Visual representation of the time series of the 435-averaged P3b mean amplitude

values (upper trace) versus 435-averaged RT values (lower trace).

8.3.2 Errors of Commission

There was only one participant who executed errors on the ‘no-go’ trials (six errors of
commission, approximately 10% of all ‘no-go’ trials). Additionally, none of the
participants committed errors of omission. Given that there were very few errors in

total, we did not carried out further analysis regarding this matter.

8.3.3 Go-No-go Comparison

Paired sample t-test for the N2 ERP component at all four electrode sites revealed
statistically significant difference between ‘go’ and ‘no-go’ trials (Fz: t(1,11)=3.42,
p<.01; Cz: t(1,11)=3.26, p<.01; CPz: t(1,11)=3.40, p<.01; Pz: t(1,11)=3.31, p<.01).
Similarly we observed statistically significant differences across ‘go/no-go’ trials at
all four channels for P3a (Fz: t(1,11)=3.30, p<.01; Cz: t(1,11)=3.80, p<.01; CPz:
t(1,11)=4.55, p<.001; Pz: t(1,11)=4.64, p<.001) as well as for P3b (Fz: t(1,11)=2.54,
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p<.05; Cz: t(1,11)=3.40, p<.01; CPz: t(1,11)=6.11, p<.001; Pz: t(1,11)=8.72, p<.001)

ERP components.

8.3.4 Pearson’s Correlation Results

In order to evaluate the correlation between ERPs and RTs the Pearson correlation
was used. To further examine the strength of obtained correlation results the
Bootstrapping and Fisher-Z transform methods was applied to the data, verifying the
consistence of the obtained results. The results of correlation between the RTs and
P3a and P3b mean amplitudes are presented in the Table 8-1. These revealed that,
on the group level, the correlation was negative on all electrode sites under study,

with the high statistical significance (p< .001, Table 8-1).

However, compared to the group level, the overall significance of Pearson
correlation varied substantially between individual participants at all four sites and
in both P3a and P3b ERP windows. The results were less variable in the P3b
compared to P3a window (values of correlation are presented in lower part of Table
8-1). Moreover, even in the P3b window, as obvious from the Table 8-1, only 4 out of
12 participants followed the general trend of negative correlation between ERPs and
RTs at all four sites. Another four participants had significant negative correlations
at 3, 2 or only 1 electrode site. Finally, one participant even had positive correlation
over all sites, while the remaining three participants had positive correlations at 2 or

3 electrode-sites under study.

Unlike the mean P3a and P3b amplitudes, the correlation between RTs and
P3a and P3b latencies was inconsistent. Moreover, the distribution of latencies at all
four sites of interest (Fz, Cz, CPz and Pz), across both P3a and P3b windows
significantly differed from normal distribution. For that reason, the log instead of raw
values was used, which approximated normal distribution somewhat better. At the
group level, the P3b sub-component showed only two marginally significant negative
correlations (at CPz and Pz electrode sites). On the other hand, P3a subcomponent
latencies showed positive correlation at all electrode sites (p<0.05) at the group level.
However, when analyzed for the individual subjects, the pattern of results was

inconclusive.
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Table 8-1: Pearson’s correlation values between the RTs and P3a and P3b mean amplitudes

on the group level (upper part) and on the individual level (lower part of the table).

Pearson’s Correlation Values

Component P3a P3b
Electrode site Fz Cz CPz Pz Fz Cz CPz Pz
——————————————— ;- ———————————————————
Group level -.23 -.16 -.15 -.03 -.24 -.25 -.27 -.18

P3a P3b
Individual Subjects

Fz Cz CPz Pz Fz Cz CPz Pz
1 - .04  -01 .03 .07 27 26 -23 18
2 -.16 -.13 -.05 -.05 14 18 -.19 20
3 -.14 .01 .09 .09 12 23 .18 08
4 -.33 -.35 -.36 -.36 10 14 20 27
5 -.03 .02 .02 .03 19 S 11 06
6 -.05 -.03 -.03 -.02 15 .10 -.07 04
7 .22 .22 .16 .14 15 23 .22 19
8 -.18 -.07 -.03 -.01 18 07 -.05 08
9 .03 .19 .13 .10 17 17 .02 05
10 -.07 .13 .16 .16 01 14 .02 06
11 -.53 -.60 -.61 -.52 46 .46 -.46 40
12 .36 44 41 .36 15 12 .02 19

- Negative correlations (p<0.05)

- Positive Correlations (p<0.05)

- Non significant values (p>0.05)

Based on the results reported beforehand, two groups of participants were
identified, i.e. five participants who showed negative correlation between RTs and P3b
amplitude in one group, and four who showed positive correlation in the other.
Regarding RTs, participants with negative correlation between RTs and P3b were
faster (t(RT)=2.2, p<.05), with higher P3b amplitudes (t(Fz)=35.21,p<.001;
t(Cz)=38.91,p<.001; t(CPz)=39.68,p<.001; t(Pz)=28.36,p<.001) and shorter P3b
latencies (t(Fz)=36.31,p<.001; t(Cz)=30.74,p<.001; t(CPz)=30.43,p<.001;
t(Pz)=34.61,p<.001). On the other hand, the positively correlated participants showed

slower RTs, lower P3b amplitudes and longer latencies.

Similarly, with regard to P3a component, two groups of participants (four in
each) demonstrated the same pattern of results. Negatively correlated had higher
amplitude (t(Fz)=22.2,p<.001; t(Cz)=26.5,p<.001; t(CPz)=27.14,p<.001;
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t(Pz)=16.84,p<.001) and shorter latencies (t(Fz)=18.77,p<.001; t(Cz)=11.05,p<.001;
t(CPz)=7.51,p<.001; t(Pz)=9.89,p<.001), and vice versa for positively correlated.

However, there were no significant group differences regarding RTs.

8.4 Discussion

The grand average comparison between ERPs extracted for ‘go’ and ‘no-go’ stimuli
revealed that the higher P300 amplitude values are elicited for frequent ‘go’ condition.
This finding was similar to the findings reported in previous study (Chapter 7).
However, this is in contrast to most of the other findings, where participants were
required to respond to deviant (infrequent) stimuli. Nevertheless, this manipulation
(with responding to frequent stimuli) was necessary, given that the study was
conducted in simulated working environment, whereby the continuity of operation is
essential. Therefore, the lower amplitude value of the ‘no-go’ P300 component is not
surprising (Figure 8-1), since the passive stimulus processing generally produces
reduced P300 amplitudes, as non-task events engage attention resources to reduce

the amplitude (Polich 2007).

The Pearson’s correlation between the RTs and P3a and P3b amplitudes, on
the group level at all four sites of interest, showed significant negative correlation
(Table 8-1). This confirms the main hypothesis, proving that the higher P300
amplitude values, which reflect the higher level of attention allocated to the task
(Hohnsbein et al., 1998; Murata et al., 2005) correspond to the shorter RTs needed
to complete the action. Additionally, higher values of negative correlation were
obtained for the P3b, compared to P3a sub-component. However, the correlations
between these modalities on the individual level were not consistent as within the
group (Table 8-1), which constitutes one of the main finding of this study. This
inconsistency could be attributed to the inter-individual differences, as the P300
component is influenced with the various factors, e.g. intelligence,
introversion/extraversion, etc. (Picton 1992), but there can be also individual
differences that are not functional but anatomical, such as scull thickness
(Hagemann et al., 2008). Furthermore, the RT variability is also known to be
subjected to inter-individual differences (MacDonald et al., 2007). Therefore, this
study supports the notion of Hockey et al. (2009), where the importance of studying
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individual level data when performing psychophysiological measurements in

ergonomics studies was emphasized.

The Pearson’s correlations results between RT and P3b, identified two groups
of participants: the one of which was negatively correlated and the other one positively
correlated. Negatively correlated group was faster with higher P3b amplitudes and
shorter P3b latencies, whereby the positively correlated group showed slower RTs,
lower amplitudes and longer latencies. Similar pattern of the results was observed
for the P3a component (except for the RT comparisons, which were not significant).
Therefore, it may be concluded that participants who showed negative correlation
between P3b component and RTs were more focused on the task (given that they had
higher P3b amplitude values) and were more efficient (given shorter RTs) than the
positively correlated group. However, this finding should be examined in future
studies and the consistency of the correlation results on individual basis needs to be

confirmed through repeated measures on a single subject basis.

Another interesting comparison would be between ERPs on ‘go’ trials preceding
correctly withhold ‘no-go’ trials and on ‘go’ trials preceding commission error on ‘no-
go’ trials, as this could be an useful information on alerting the attention system
(Robertson et al., 1997). However, the fact is that there was only one participant who
executed actions on ‘no-go’ trials (6 errors in total, app. 10%). Interestingly enough,
this was the participant (No.12, from Table 8-1) who showed a positive correlation
between RTs and P3 amplitudes, in contrast to the generally observed trend (negative
correlation between RTs and P3 amplitudes). It is noteworthy that it was hard to set
an objective criterion as to what action to mark as an error, given that participants
would sometimes demonstrate slight movements without executing the action.
Therefore, the stricter criterion was chosen, based on which the errors of commission

were defined as completion of the action on ‘no-go’ trials (including the pedal press).

Although the P300 component is generally related to attention processing, the
mechanisms that generate P3a and P3b subcomponents differ significantly. P3a
component is more related to novelty preference, processing of exogenous aspects of
stimuli, i.e. low-level attention processes (Daffner et al., 2000; Polich 2007). This
component usually follows the N2 component, which was also found to be increased

in response to novel or deviant stimuli processing (Daftner et al., 2000), as also shown
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on Figure 8-3.0n the other hand, P3b component was found to be more related to
high-level attention processing, processing of endogenous aspects of stimuli, context-
updating information (working memory) and memory storage (Polich 2007). The P3b
component is also related to decision processes (O’Connell et al., 2012), in which it
mediates function between stimulus processing and required response (Verleger et
al., 2005). This is in line with our findings, since the P3b was more prominent in
response to go-stimuli, which required action, particularly in central and centro-

parietal sites.

Further examination of continuous-like time series of the RTs and P3a and
P3b amplitudes revealed visible trends of fluctuation of these two modalities over time
(Figure 5). Existing literature suggests that both RTs (Flehming et al., 2007) and P300
component (especially P3b, Polich et al. [2007]) are closely related to the attention,
thus it can be inferred that fluctuation of these modalities correspond to the attention
fluctuation on the neural as well as on the behavioral level. However, it is apparent
from the results that not all the participants showed negative correlation between
RTs and P3a and P3b components, which arises an obvious question: which data are
more closely related to the attention and should ERP or RT measures be used for
evaluation of the assembler attention? Bishu and Drury (1988) pointed out that in
assembly tasks translational stage from input information into output action is more
complex than in conventional RT tasks and therefore, the structure of the response
may influence the performance. Moreover, in RT experiments there are many possible
processes that contribute to the RT and therefore it is difficult to isolate and address
specific feature of interest, such as attention (Salthouse and Hedden 2002). On the
other hand, the P3b component is found to be the direct correlate of the higher-level
attention processing (Verleger et al., 2005). Following this logic, we speculate that
findings in this study demonstrate that ERP correlates of attention offer a more
detailed and sophisticated understanding of the nature of attention decline compared
to robust, but rough RT measures. Not only that the ERPs provide the precision of
measurement (which is recognized as ‘reaction time of the 21st century’, Luck et al.
[2000]), but also they provide possibility to gain more insightful understanding of the
nature of the process as demonstrated through the analysis of P3a and P3b sub-
components. However, further studies are desirable to confirm the generality of this

finding.
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The analysis of the relationship between RTs and P3a and P3b peak latencies,
revealed no statistically significant correlations between these components. Although
Murata et al. (2005) proposed that the P300 peak latency corresponds to the stimulus
evaluation time and that it can be also directly correlated to the level of attention,
this was not observed in present study. This finding is consistent with the recent
work of Ramchurn et al. (2014) and it confirms that only the P300 component
amplitude variation, but not its latency, correlates with the variation of the RTs. The
P300 amplitude, on the other hand, was recognized as an index of the attention
allocated to the task in numerous studies (Murata et al., 2005; Polich 2007; De Vos
et al., 2014 and Ramchurn et al., 2014).

It was reported that the sudden drops in the attention, during a monotonous
task, could be attributed to the e.g., daydreaming and mind wandering (Fisher, 1998).
However, the neural correlates of these phenomena are still not fully understood
(Hasenkamp et al., 2012). For instance, potential benefit of real-time attention
monitoring, would be to provide the feedback to the operator once the attention level
starts decreasing, thereby attempting to keep the attention level high and prevent
possible human errors. The presented study indicates that “periods of attention
oscillation” are sufficiently long to make such a feedback system meaningful.
However, one of the limitations of the present study is that the results were obtained
in an off-line analysis. Therefore, one of the directions of future studies will be
utilization of one of the existing Brain Computer Interface (BCI) software packages
for real-time data processing in the desired time window and to provide proper visual,
auditory or mechanical (e.g. vibration) feedback. The process could be automated in
sense that once the amplitude values of the P3b component start decreasing with an
obvious trend, as indicated by red arrows on Fig 5. (e.g. between 180th and 200th
averaged trial), the feedback could be provided. It is important to investigate the
effects of such a feedback also in relation with its content, all the while taking care

of workers privacy and mental well-being.

Although, Mijovic et al (2016) believe that the measurement of covert attention-
related modality (P3b) offers better understanding of attention processes than the
overt performance measure of RTs, one of the limitations of present study is that EEG
is still uncomfortable for everyday use and on-site recordings in naturalistic

industrial environments. The main reason for this is that the reliable EEG recordings
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still depends on the wet gel-based electrodes (Mihajlovi¢ et al., 2015) and an ethical
question of EEG recording arises, in sense that the supervisor could have information
about the physiological signals obtained from employees, raising privacy concerns
(Fairclough 2014). Nevertheless, if the positive/negative correlation between P3b
component’s amplitude and RTs is holds on a single subject basis, then proposed
methodology can be applied as that a primary (entry) test for workers. The benefits of
such a testing can be twofold: firstly, the company management could be able to early
detect whether the worker, for particular work position, is focused on the task (based
on which group he belongs - positively/negatively correlated); secondly, the reliable,
comfortable and low-cost attention-monitoring system could be created based solely
on non-invasive RTs recordings. Thus, the future studies should be directed towards
investigation of the reliability of correlation between P3b and RTs on single subject

basis, upon which the proposed methodology could be applied in industrial settings.

The presented methodology was applied on a manual assembly work, where a
single functional modification of the real workplace was needed, in the sense of on-
screen stimulus presentation for the aim of eliciting the anticipated P300 ERP
component. This modification was necessary, since the covert cognitive context is
usually encrypted in complex brain dynamics and in naturalistic settings it is hard
to isolate the specific cognitive processes, since they should firstly be evoked (Bulling
and Zander, 2014). Therefore, at current stage this methodology cannot be directly
applied for the on-site recording in realistic industrial settings and other workplaces,
as we would have had to modify the work routine. For that reason, either a more
general approach needs to be developed for further application to this work position,
or another work position has to be identified, where such attention monitoring
systems can be readily applied. These represent an additional direction for future

research in this area.

8.5 Conclusions

This study extended existing psychophysiological approaches in ergonomics by
providing novel methodology for workers’ continuous attention monitoring, during
the course of a monotonous assembly task and in the realistic workplace
environment. It was observed that, while on the group level P3a and P3b attention

related ERP component amplitudes, and the RTs correlated in the negative fashion,
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that did not hold on individual subjects' level. This constitutes one of our major
findings: overt performance measure of RTs alone are not reliable attention level
measure per se, and covert physiological data needs to be employed for this task.
Oscillating attention justifies the use of future feedback systems that would serve
both to increase the attentiveness of workers and to prevent work-related errors. In
that way, the potential accidents, which could lead to workers injuries and material
damage, could be prevented, consequently increasing the workers overall well-being.
Future studies are still needed to confirm the applicability of proposed methods, as

well as to tune and sufficiently generalize them.
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9.Communicating the User State: Towards Cognition

Aware Computing in Industrial Settings

9.1 Introduction

This chapter is based on the work that is in preparation for submission, and explores
the utilization of the wearable EEG and Kinect devices for the aim of the attention

monitoring of operators, employed on monotonous repetitive assembly tasks.

As discussed in Chapter 5 (Section 5.1), wearable sensors provide the
possibility to move from conventional, explicit human-computer interaction (HCI), to
more natural implicit HCI. In an implicit HCI context (Schmidt, 2000), the computer
interprets human physiological and behavioral data as its input, enabling the
development of cognition-aware computing for the user state monitoring. This is
mainly attributed to a rapid development of sensing technology and improvement of
algorithms that can interpret the acquired signals. Following that path, sensing
technology is not only providing means for computers to obtain a better image of our
environment (such as in smart cities, houses, vehicles etc.), but it also opens a new
way of understanding humans, as the technology is deployed to monitoring our
behaviors and states. In this context, cognition-aware computing was recently
defined as the computing system that senses and adapts to cognitive aspects of

personal context (Bulling and Zander, 2014).

Despite the fact that manufacturing industry has aimed to reach “lights-out”
manufacturing (i.e. fully automated factories, Tompkins et al., 2010) for decades,
there are still many industrial processes relying on human operators. However,
humans are often characterized as the most fallible element in the production line
and due to limited mental and physical endurance that can sometimes cause
behavior and responses to be unpredictable (Hamrol et al., 2011). Therefore,
introduction of cognition-aware computing in industrial settings could be beneficial

and these effects of deviation in operators’ cognitive state could be lessen.

Although industry has conceived the usage of wearables for over a decade now
(Stanford, 2002), the majority of their applications are still oriented towards physical

activity recognition (Stiefmeier et al., 2008), rather than activity recognition for the
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mind (Kunze et al., 2013). In order to get closer to applicability of cognition-aware
computing (Bulling and Zander, 2014) in workplaces, this study propose a system
that is capable of synchronous recording and analysis of brain dynamics and active

behavior in replicated industrial environments.

As discussed in Chapter 3, currently the only available technologies for
investigating the brain dynamics in naturalistic environments are fNIRS and EEG
(Gramann et al., 2014). Although fNIRS is still less obtrusive than EEG, it is an
indirect metabolic indicator of brain dynamics and it suffers from low temporal
resolution (Gramann et al., 2014). On the other hand, the EEG provides the direct
measure of the neural activity and it possess high temporal resolution (Gramann et
al., 2014). As EEG recently became wearable, it currently represents the most
powerful tool for investigation of brain dynamics in naturalistic environments. The
EEG has been successfully applied in BCI, which has already moved from assistive
care to other everyday applications (Van Erp et al., 2012). BCI appears to be
increasingly accepted for everyday use, since various companies have started
developing consumer based EEG devices for e.g. gaming purposes (Van Erp et al.,
2012). Exploring additional applications of BCI, a novel direction of so-called passive
BCI has emerged (Zander and Kothe, 2011). Passive BCI is oriented towards
continuous analysis of the recorded brain signals in human-machine interaction,
with the aim of objectively assessing user states. A clear momentum of passive BCI
technology recently enabled new additions to application in industry, empowering the
research area of neuroergonomics (Parasuraman, 2003). The only obstacle in
wearable EEG recording is that reliable EEG measurements could still be made solely
with wet electrodes (Mihajlovi¢ et al., 2015), which is still uncomfortable for the
workers. However, as discussed in previous chapters, it provides the possibility to
investigate the brain dynamics in faithfully replicated workplaces and the findings
from these kinds of experiments can be translated to the industry, once the EEG

becomes fully comfortable.

Another major challenge in ergonomics and HCI research is the investigation
of movements and postures of workers in real time. For that aim, internal
measurement units (IMUs) and MoCap sensors can be used, as they have already
achieved a degree of success. However, the majority of IMUs and MoCap Systems use

external sensors (e.g. Depth of Field targets), which are attached to the person being
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recorded (discussed more in detail in Chapter 3). Even though workers reported no
issues wearing the IMUs sensor network during work (Stiefmeier, 2008), the precise
monitoring using contactless sensors would bring an additional comfort. As an
emerging alternative, the gaming industry opened a new path in affordable multi-
sensor technology, which is capable of precise motion capturing without the need for
wearable sensors, in the form of e.g. Microsoft Kinect. Apart from its primary use,
researchers extended its applications in the ergonomics domain, since it provides the
possibility to effectively observe the workers’ movements and postures in real-time

and in real-world environments.

The majority of research related to operators’ motion is related to posture
estimation or action recognition (e.g. Stiefmeier et al., 2008) , whereas much less
attention has been dedicated to linkage of cognitive processes to motor actions. An
important notion is that the cognition is closely related to motor actions in
naturalistic and dynamics environments (Parasuraman and Rizzo, 2008). For
example, a recent study reported that variability in quantity of movements, which are
not directly related to the task, could be an important indicator of the user state (Roge
et al., 2001). This study investigated behavioral activity off-line and indirectly, since
the participants were recorded with the RGB (Red Green Blue) camera and manual
analysis was subsequently performed, which consisted of counting the number of
identified activity types (Roge et al., 2001). However, advances in HCI and computer
vision technology allow on-line and automated processing of these. Sensors that rely
on structured light technology in unison with additional sensors opens the possibility
of automatic acquisition of information on behavioral activities, as it can directly
record the position of human body key points (joints) in time. This enabled the
development and usage of a simple behavioral model, based on movement energy
(ME). Ultimately, the combination of brain dynamics and behavioral modalities can
open a deeper understanding of human mental states during complex work activities

(Gramann et al., 2014).

In order to investigate above described concept, the specific workplace was
replicated from our industrial partner and enhanced it with a sensor network, thus
creating the sensitive workplace (As described in Chapter 5, Section 5.5). The next
step was synchronous and in real-time recorded the EEG and behavioral signals and

investigated the correlation between these modalities. The goal is to achieve a system
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that will be able to perform online detection of deviations in user states. Such a
system should be able to detect a drop in mental and physical performance so that
appropriate action (e.g. a break or a change in task) can be taken. Ultimately, such a
system could prevent the occurrence of operating errors and improve the worker

experience.

9.2 Methods

9.2.1 Participants

Twenty male subjects (aged between 19 and 21), without industrial working
experience, participated in the study. The study was restricted to male participants
both to exclude possible inter-gender differences and to replicate the selected job task
more faithfully, since in company that supported our research only males occupy the
specific workplace under study. Participants did not report any past or present
neurological or psychiatric conditions and were free of medication and psychoactive
substances. They were instructed not to take any alcoholic drinks prior to, nor on the
day of participation in the study. All participants had normal or corrected-to-normal
vision. They agreed to participate in the study and signed informed consent after
reading the experiment summary in accordance with the Declaration of Helsinki. The
Ethical Committee of the University of Kragujevac approved the study and procedures

for the participants.

9.2.2 Experimental Setup

Experimental setup was explained in detail in Chapter 5, Section 5.2

9.2.3 Experimental Procedure

Each of the participants arrived in the laboratory at 9:00 a.m. Upon carefully reading
the experiment summary and signing the informed consent for participation in the
study, participants started the 15-minute training session in order to get familiar
with the task. Finally, EEG cap and amplifier were mounted on the participants’ head
and the recording started around 9:30 a.m. Participants were seated in the
comfortable chair in front of the improvised machine. In this study, both, the
Numbers and the Arrows paradigm (explained in the Chapter 5, Section 5.3.2) were

used in balanced order and participants had a 15-minutes break between the tasks.
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Each task was presented on the 24” screen from a distance of approximately 100 cm.
The screen was height adjustable and the center of the screen was set to be in level

with participants’ eyes.

9.2.4 ERP Processing

EEG signal processing was performed offline using EEGLAB (Delorme and Makeig,
2004) and MATLAB (Mathworks Inc., Natick, MA). EEG data were first bandpass
filtered in the 1-35 Hz range, following which the signals were re-referenced to the
average of the mastoid channels (Tp9 and Tpl0). Further, an extended infomax
Independent Component Analysis (ICA) was used to semi-automatically attenuate
contributions from eye blink and (sometimes) muscle artifacts (as explained in Viola
et al., 2009; De Vos et al., 2010; De Vos et al., 2011). After this data preprocessing,
ERP epochs were extracted from -200 to 800 ms with respect to timestamp values of
‘g0’ and ‘no-go’ stimuli indicated by the SNAP software. Baseline values were
corrected by subtracting mean values for the period from -200 to O ms from the
stimuli. The identified electrode sites of interest for the ERP analysis in this study
were Fz, Cz, CPz and Pz, as the P300 component is usually distributed and is most

prominent over the central and parieto-central scalp locations (Picton, 1992).

Similarly to study presented in Chapter 7, a one-step moving window was employed
on single trials ERPs elicited by go condition, by averaging the last 15 trials for
selected electrodes. Finally, the P300 amplitude was calculated for averaged ERPS
and for ‘go’ conditions, using mean amplitude measure (Luck, 2014) in the time

window from 230 to 450 ms, with regard to the time stamps of the stimuli.

9.2.5 Engagement Index (EI) Calculation

EI is a measurement of a person’s cognitive engagement in a task, reflecting their
level of alertness (as mentioned in Chapter 2, Section 2.3.4). The EI represents the
ratio between the high frequency waves (), and the summation of the low frequency
waves (a+0), i.e. EI = 3/(a+06). Higher EI indicates the higher engagement of the person
in the task, while the low values of EI indicate that person is not actively engaged

with some aspect of the environment during the task (Prinzel et al., 2000).

In order to obtain the EI values, the raw EEG signal was bandpass filtered in three

frequency bands (6, a and B), following which the signals were re-referenced and the
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artifacts were removed using ICA. The EEG signal was then segmented according to
the timestamps of the stimuli appearance and the signal segments of 1s preceding
the stimulus appearance were used for further analysis. Further, the Fast Fourier
Transform (FFT) was applied to the signals and the Power Spectral Densities (PSDs)
were calculated for each frequency band and each simulated operation. Finally, this

allowed us to calculate the EI as seen in Figure 9-1.

9.2.6 Movement Energy (ME) Calculation

In order to investigate whether the task unrelated movements could be quantified
automatically, we recorded the upper body movements of the participants with the
Kinect. As a first step towards this goal, a correlation between task-unrelated ME and
the level of attention, with the reference to the EEG attention-related modalities of

P300 amplitude and EI was investigated.

In experimental setting, the 10 key-points seated model was used, as the replicated
machine occluded the lower-body part of the participants (Figure 9-1). Further, the
methodology for automatic quantification of the task unrelated ME was applied,
which was based on movement of the key-points and the simple equation of the
kinetic energy adopted from classical mechanics. The motion data were extracted and
analyzed in the period between the operators’ completion of each operation and the
consecutive stimuli that was presented to the participants. In that period, during
conductance of the step 8 from Figure 5-4 (Chapter 5), the participants had no
prescribed activity and the expectation was that they would spend that time relatively
still. Further, the kinetic energy of movement was calculated for each simulated
operation and for each of the key-points in all-three axes. Finally, the ME for each

trial was calculated as the summation of kinetic energies in all three axes (Figure 3c).

9.2.7 Reaction Time Calculation

As stated in previous section (8.1), it is considered that shorter RTs indicates higher
attentive state and vice versa, except in case of speed-accuracy trade-off. In this
study, the RTs were calculated for each simulated operation, as a time elapsed
between stimulus presentation and the beginning of the simulated machine crimping

action, i.e. as the time elapsed between step 1 and step 6 from Figure 4-4.
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9.2.8 Data Averaging

With the aim of investigating the correlation between obtained modalities, the same
approach for averaging (using one-step moving window) was applied to the ME, RTs
and EI signal modalities, prior to the statistical analysis. Figure 8-1 graphically
depicts the algorithms that were used for the data analysis in this study.

9.2.9 Statistical Analysis

An off-line data analysis was conducted in order to investigate the relationship
between EEG and behavioral signal modalities. Upon data averaging, the matrices of
435 data points for each participant and task were fed into IBM SPSS and the data
were aggregated according to the number of trials. First, a Spearman’s correlation
was performed, mainly to investigate whether the any of the recorded modalities
reflected the decline in user state over the trials (as an approximation of time).
Further, Pearson’s correlation was carried out, with the aim of investigating whether
behavioral modalities correlate with the EEG derived modalities and to determine

whether ME could be used as a reliable modality for estimation of user state.
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126




9.3 Results and Discussion

Regarding the Spearman correlation it was found that, regardless of the task order,
the monotonous task (Numbers task) induces an attention and engagement decline,
as reflected by the decline of the P300 amplitude and EI. Additionally, ME increases
as the tasks progress (Figure 8-2 in the upper left table). On the other hand, results
in the more mentally demanding task (Arrows task) depended on the order in which
it was presented to the participants. This is especially notable through evaluation of
the P300 amplitude, as it increased during the task if the Arrows followed the SART
task. Although the EI still decreased, proving that mental engagement of the
participants decreased during the task, the evaluation of the P300 amplitude revealed
that the participants were able to maintain higher attention state during the task.
This is also notable through evaluation of ME, as only in the case where the Arrows
was the second task, the ME decreased with time elapsed, i.e. the participants made
less task unrelated movements. It is noteworthy that RTs were independent from both
task type and task order and it decreased with the time-on-task, probably caused by

the effect of rehearsing as the task progressed.

The bottom part of Figure 8-2 depicts the Pearson’s correlation results. It is notable
that the expected negative correlation between P300 amplitudes and ME is more
distinct in the case of low demand, monotonous task (SART), than in the more
mentally demanding (Arrow) task. This finding is not surprising, as in the existing
literature the quantity of movements that are not related to the task are reported to
be linked to attention decline in monotonous tasks (Roge et al, 2001). Further, when
the more monotonous task is presented first, the EI was negatively correlated for each
key-point, while in the more demanding task almost no correlations were found
between EEG and behavioral signal modalities. Finally, if the Arrows were presented
as the first task, the only negative correlation with the P300 amplitude was at the LP,
LW, RP and RW key-points, while the EI was positively correlated with the ME on
almost all key-points. This could be explained through the notion of re-activation, as
participants in the more mentally demanding task use task unrelated movements in
order to re-activate the attention related resources in the brain (Roge et al., 2001),
thus staying more focused on the task. This was not obvious if the SART task followed

the Arrow task. In fact, again in the more monotonous task, the P300 amplitude was
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negatively correlated with the ME on the majority of key-points. From all these
results, it can be infer that during low demand, monotonous tasks the ME that is

unrelated to the task is negatively correlated with the attention level.

The presented results supported the intention of assessing the user state by
synchronously recording and analyzing behavior and EEG modalities, with a
relatively simple and low-cost unobtrusive sensor network. However, an obvious
limitation is that all the analysis was done post hoc, and for that reason the future
studies will be concerned with the on-line data analysis. The future steps will include
the development of advanced algorithms for automated, real-time acquisition and
analysis of presented modalities, which could further be implement in an industrial
environment. Such a system could ultimately lead to increase of workers’ alertness
and task engagement, consequently leading to the improvement of workers overall

well-being.

9.4 Conclusion

Monotonous and repetitive tasks, commonly seen in manual assembly production
lines, often lead to mental strain, due to limited mental and physical endurance of
humans. This work focused on exploiting advances in EEG and behavioral sensing
technology in order to detect users’ states that indicate the occurrence of attention
and engagement decline. The final goal is to prevent errors that might lead to product

waste or injuries caused by deviations in user state.

This study demonstrated that EEG and behavioral markers can provide a more
detailed insight into user state. This was achieved in a realistic workplace
environment and represents a first step towards the described HCI model paradigm.
ME, which can be analyzed in real time, is less obtrusive than EEG and may provide
a reliable, stand-alone tool for attention monitoring, especially in industrial
scenarios. An obvious follow-up is to provide real-time processing of these features
and put them in a feedback loop with an indication communicated to workers. In this
way, operators could be informed about their cognitive state in a close-to real-time
manner, which could serve to prevent errors and dangerous consequences. This
could then become basis of a true future cognition-aware computing in the industrial

environments.
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Figure 9-2: Results retrieved from experimental study. Upper left table — Spearman’s
correlations of elapsed task time with physiological and behavioral factors; Bottom table —
Pearson’s correlations between behavioral and physiological factors; significance is treated at
a p<0.05 level. Fz, Cz, CPz and Pz represent the electrode sites from which we calculated
P300 amplitudes and EI The rows in the lower table represents the key point locations

derived from Kinect, explained on Figure 3. The last rows represent the response times (RTs).
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10. General Conclusions

Present dissertation investigated the possibility of objective assessment of the
operator’s cognitive state in the naturalistic workplace environment. For that aim,
faithfully replicated workplace was created, where participants in the study
performed the simulated assembly operations. The framework for synchronous
multimodal physiological and motion signals acquisition and processing was
presented and the benefits of instating such a system for both manual assembly task
design and for the real-time user-state monitoring were discussed. Although the
multimodal framework was proposed, for the aim of this dissertation, the results from
the EEG, RTs and Kinect were presented, while investigating the relationship between

these and HR and GSR signal modalities will be the subject of the future studies.

In the first experimental study, the potential benefits of inclusion of frequent
micro-breaks on the attention level was investigated. In order to investigate the
influence of the micro-breaks on the attention level of the participants, the P300
component’s amplitude was calculated for the period prior to, and following the
micro-break period. It was found that the micro-breaks enhance the attention level
of the operators, as the magnitude of the P3b component were significantly higher
following the micro-break period than preceding it. This finding can be used for the
manual assembly operations task design, in a way that the workers’ should receive
frequent short breaks during their shift. However, it is important to note that in the
presented study, only one time-window was used and therefore, the future studies
should investigate what duration of the micro-breaks would be the most desirable,

taking into account the productivity and the well-being of the workers.

Second experimental study investigated whether the hand alteration
influences the attention of the workers’. In order to investigate this hypothesis, the
participants were subjected to two distinct psychological tests that were presented to
the participants in the balanced order, and simultaneously with the simulated
assembly operations. In the first experimental paradigm, the participants could
initiate the assembly operation with whichever hand they prefer, while in the second
they were conditioned with which hand to initiate the assembly operation. The
findings indicated that the participants in the study had significantly higher attention
level in the case when they were imposed to the hand alteration condition. The
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attention was assessed through the P300 component’s amplitude and RTs. Although,
the P300 amplitude was significantly higher in magnitude in hand altering condition,
there was no difference in RTs between conditions. This finding supports one of the
main premises of the neuroergonomics, where it is sated that the overt performance
based measurements (such as RTs) are unreliable and that ergonomics should be
directed towards investigation of the covert cognitive processes. Another interesting
finding was that, in the case where hand-altering task was followed by the less
demanding task, the P300 component’s amplitude magnitude significantly dropped,
i.e. the participants had significantly lower attention level. This finding can also be
utilized for the job rotation strategy, in a way that less demanding task should not
follow the more demanding task, as the worker’s in this case face decrement in the

attention. However, this finding should be further investigated in the future studies.

Finally, the possibility for utilization of the EEG and behavioral signal
modalities, with the aim of real-time assessment of the user cognitive state, was
investigated. Regarding the brain dynamics, both the P300 component’s amplitude
and the EI were investigated and their propagation over time was assessed.
Simultaneously, the RTs and the proposed concept of the ME were also calculated
and their correlation with the brain dynamics was calculated. Although the research
was conducted in an off-line analysis, the findings from these studies suggested that
the proposed multimodal system can be successfully applied for the timely
assessment of the workers’ cognitive state. Generally, it was found that the EEG
modalities are related in negative fashion to the behavioral data, i.e. the participants
in the study were slower in executing the action when in the brain signals showed
lower attention (assessed through P300 component’s amplitude). Moreover, the
amount of task unrelated movements was higher; when the brain derived attention-
related modalities showed the decreased level of attention. Future studies should be
concerned with the development of the algorithms for the on-line acquisition and
analysis of the EEG and behavioral data, by utilization of one of the recent BCI
software packages. This should lead to possibility of timely detection of the deviation
in workers’ cognitive states, which could ultimately lead to safer production

environments.

Experimental studies, presented in the dissertation, were concerned with

investigating the relationship between EEG and behavioural modalities. Since the
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multimodal system that was proposed includes also HRV and GSR measurements,
an obvious follow up studies should be directed towards investigating the interaction
between all these modalities. For example, it was reported that the HRV increases
with lowering the alertness of humans. Similarly, it was reported that increased SCR
and SCL reflects higher attentiveness. For that reason, the relationship between HRV,
SCL, SCR, P300 ERP component (and/or EI) and behavioural modalities should be
investigated, with the aim of increasing the precision of the user state estimation in
the workplaces. Ultimately, once the relationship between all mentioned modalities

is investigated, the usefulness of the proposed system can be fully evaluated.

The work presented in this dissertation outlined the vulnerability of the
existing ergonomics methods for the assessment of the cognitive states of the
workers, and proposed that the cognitive states should be assessed by utilizing the
neuroergonomics methods. Not only that neuroergonomics provide the possibility of
objective quantification of the human cognitive states, but it also provide the
possibilities for the real-time assessment of it. The recent development in sensing
technology aided in emergence of the wearable physiological sensors, which can
nowadays be used for the recordings in the naturalistic environments. The
physiological sensor that was of the most importance for the neuroergonomics
studies was the development of wearable EEG. Therefore, it is nowadays possible to
directly observe the brain dynamics in applied environments. On the other hand, the
MoCap technology also advanced, which can be observed through recently available
sensors that are based on the structured light technology, but which are also
inexpensive. This dissertation presented the overall framework for utilization of the
wearable sensors and the MoCap, with the aim of the real-time user state monitoring.
The presented system can be foundation for the future implicit HCI system that can
be employed for the cognition-aware computing in industry, which can ultimately
lead to decrease of human errors in industry, which are caused by the attention

decline, consequently increasing the overall workers’ well-being.
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