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Abstract 
Cardiovascular diseases, particularly atherosclerosis, remain leading causes of morbidity 
and mortality worldwide, necessitating innovative approaches for early detection, risk 
stratification, and management. This research explores the application of advanced 
computational techniques—artificial intelligence (AI) and agent-based modeling 
(ABM)—to address the complexities of atherosclerosis progression. AI, leveraging 
machine learning and deep learning algorithms, has demonstrated significant potential in 
analyzing large-scale datasets, including electronic health records, medical imaging, and 
genetic profiles, to predict disease onset and progression with greater accuracy than 
traditional methods. Concurrently, ABM offers insights into the intricate biological 
interactions within the cardiovascular system by simulating the behaviors of individual 
agents, such as cells and tissues, in response to various stimuli. However, both 
methodologies present limitations, including challenges related to data quality, model 
interpretability, and the complexity of biological systems. 

This research underscores the need for interdisciplinary collaboration between 
computational scientists, clinicians, and engineers to refine these models and facilitate 
their integration into clinical practice. Sensitivity analysis was conducted on the 
developed ABM model and a virtual population was created from the data in order to 
develop as surrogate model based on AI. The dataset captured a landscape of patient-
specific variability and provided significant variation for the model to learn.  The 
surrogate model for atherosclerotic plaque progression was based on artificial neural 
networks and deep learning and performed with 90.9% accuracy and congruency with 
the ABM indicating its strong potential to be used in practice. 

By addressing their inherent limitations, AI and ABM hold the potential to revolutionize 
cardiovascular medicine, leading to more personalized and effective treatments. Future 
research directions include improving data integration, enhancing model transparency, 
and conducting real-world validation studies to translate computational insights into 
meaningful clinical outcomes. The findings of this study contribute to the growing body 
of evidence supporting the role of ABM andAI surrogate modeling in advancing our 
understanding of cardiovascular diseases. The potential of ABM modeling backed with 
decreasing of computational resources necessary and enhanced speed of decission 
making ensured by surrogate modeling offers promising pathways for better patient care 
and disease management.  

 

Keywords: atherosclerosis, plaque progression, multiscale modeling, agent-based 
modeling, artificial intelligence 
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Sažetak istraživanja 
Кардиоваскуларне болести, нарочито атеросклероза, и даље су водећи узроци 
морбидитета и морталитета широм света, што захтева иновативне приступе за 
рано откривање, стратификацију ризика и управљање болестима. Ово 
истраживање истражује примену напредних рачунарских техника—вештачке 
интелигенције (AI) и моделирања заснованог на агентима (ABM)—у решавању 
комплексности прогресије атеросклерозе. Вештачка интелигенција, користећи 
алгоритме машинског и дубоког учења, показала је значајан потенцијал у анализи 
великих скупова података, укључујући електронске здравствене записе, 
медицинске слике и генетске профиле, за прецизније предвиђање појаве и 
прогресије болести од традиционалних метода. Истовремено, ABM пружа увид у 
сложене биолошке интеракције унутар кардиоваскуларног система симулирајући 
понашање појединачних агената, попут ћелија и ткива, као одговор на различите 
стимулусе. Међутим, обе методологије имају ограничења, укључујући изазове 
везане за квалитет података, интерпретабилност модела и сложеност биолошких 
система.   

Ово истраживање истиче потребу за интердисциплинарном сарадњом између 
рачунарских научника, клиничара и инжењера ради унапређења ових модела и 
њихове интеграције у клиничку праксу. Спроведена је анализа осетљивости на 
развијеном ABM моделу, а из података је креирана виртуелна популација ради 
развоја сурогат модела заснованог на вештачкој интелигенцији. Скуп података је 
обухватио спектар варијабилности специфичне за пацијенте и обезбедио значајну 
варијацију за учење модела. Сурогат модел за прогресију атеросклеротичних 
плакова заснован је на вештачким неуронским мрежама и дубоком учењу и 
постигао је тачност од 90,9% и усклађеност са ABM, што указује на његов велики 
потенцијал за практичну примену.   

Уз превазилажење урођених ограничења, AI и ABM имају потенцијал да 
револуционишу кардиоваскуларну медицину, водећи ка персонализованијим и 
ефикаснијим третманима. Будући правци истраживања укључују унапређење 
интеграције података, побољшање транспарентности модела и спровођење студија 
валидизације у стварном свету ради претварања рачунарских увида у значајне 
клиничке резултате. Налази овог истраживања доприносе растућој бази доказа 
који подржавају улогу ABM и AI сурогат моделирања у унапређењу нашег 
разумевања кардиоваскуларних болести. Потенцијал ABM моделирања, подржан 
смањењем потребних рачунарских ресурса и убрзањем доношења одлука 
захваљујући сурогат моделирању, нуди обећавајуће путеве за бољу негу пацијената 
и управљање болестима.   

Кључне речи: атеросклероза, прогресија плака, вишескално моделирање, 
моделирање засновано на агентима, вештачка интелигенција 
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1. Introduction 
Atherosclerosis is a chronic, progressive disease characterized by the buildup of plaques 
within the arterial walls, leading to reduced blood flow and increasing the risk of severe 
cardiovascular events such as heart attack, stroke, and peripheral artery disease. As a 
leading cause of morbidity and mortality worldwide, atherosclerosis is responsible for a 
significant proportion of deaths related to cardiovascular disease (CVD), which remains 
the leading global cause of death. Despite advances in prevention, diagnosis, and 
treatment, the burden of atherosclerosis continues to rise, driven by factors such as aging 
populations, sedentary lifestyles, and an increase in metabolic disorders, including 
obesity, diabetes, and hypertension. 

The pathophysiology of atherosclerosis is complex, involving a combination of endothelial 
dysfunction, lipid accumulation, inflammatory processes, and cellular responses within 
the arterial wall. These interactions result in the formation and growth of atheromatous 
plaques, which can become unstable, leading to plaque rupture and thrombosis. Early 
detection and accurate risk stratification are critical for preventing the progression of the 
disease and reducing the likelihood of life-threatening complications. 

However, conventional diagnostic methods, such as clinical risk scores and medical 
imaging techniques, often fall short in identifying subtle or early-stage disease, making it 
difficult to intervene before significant damage occurs. Additionally, the multifactorial 
nature of atherosclerosis, with contributions from genetic, environmental, and lifestyle 
factors, presents a substantial challenge for personalized treatment approaches. In light 
of these challenges, there is a growing need for novel methodologies that can capture the 
complexity of the disease and enhance our ability to predict its progression. 

1.1. Subject and aim of this dissertation 
The subject of this doctoral dissertation is the development of an advanced model for 
predicting the progression of atherosclerotic plaque in peripheral arteries, utilizing 
sophisticated computational methods such as Artificial Intelligence (AI), agent-based 
modeling (ABM), and finite element analysis (FEA). Atherosclerosis in peripheral arteries 
is a major contributor to peripheral artery disease (PAD), a serious global health concern 
that can lead to severe complications, including chronic pain, tissue ischemia, and, in 
advanced cases, gangrene or limb amputation. Moreover, PAD is closely associated with 
systemic atherosclerosis, significantly increasing the risk of major cardiovascular events 
such as heart attacks and strokes. The ability to accurately predict plaque progression and 
intervene early is therefore crucial for improving patient outcomes. 

The primary goal of this research is to develop a predictive application that models the 
behavior of atherosclerotic plaque in arteries. This tool will integrate AI, ABM, and FEA to 
provide a powerful platform for clinicians and researchers to predict disease progression 
and manage high-risk patients. The application will be embedded within the DECODE 
platform, a comprehensive computational project aimed at advancing the diagnosis and 
treatment of cardiovascular diseases. This research focuses on creating a data-driven 
model that simulates the biological, mechanical, and hemodynamic factors influencing 
plaque progression, thereby enhancing our ability to predict its trajectory in arteries. 

Atherosclerosis, characterized by the buildup of lipid-rich plaques within arterial walls, 
restricts blood flow and poses a significant risk for cardiovascular complications. 
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Peripheral artery disease affects the arteries of the legs and arms, leading to conditions 
such as claudication, where muscle pain is caused by insufficient blood flow during 
exercise, and in severe cases, critical limb ischemia and the potential for limb amputation. 
Despite the availability of diagnostic tools such as ultrasound, CT angiography, and 
magnetic resonance imaging (MRI), current clinical methods fall short in predicting how 
plaques will evolve over time. This gap underscores the need for advanced models that 
leverage cutting-edge technologies to improve predictions. 

In combination with ABM, which provides detailed simulations of cellular and molecular 
interactions during plaque formation, AI adds a layer of predictive power by learning from 
vast datasets and making high-accuracy predictions about future plaque behavior. The 
integration of AI into this modeling framework is crucial because it allows for real-time 
analysis and prediction based on continuously updated patient data, enabling 
personalized treatment strategies. AI will not only assist in risk stratification but also 
guide therapeutic decisions, potentially identifying the optimal intervention points to 
prevent adverse outcomes such as plaque rupture or total arterial occlusion. 

ABM offers a complementary approach by simulating the complex biological processes at 
play in atherosclerosis, such as the interactions between endothelial cells, smooth muscle 
cells, and inflammatory cells in the arterial walls. By creating a virtual environment where 
these "agents" interact over time, ABM allows researchers to model the dynamic 
progression of plaques in response to both biological stimuli (e.g., inflammation, lipid 
deposition) and mechanical forces (e.g., blood flow-induced shear stress). This agent-
based approach is particularly valuable for exploring "what-if" scenarios, where different 
intervention strategies can be tested to determine their effect on plaque progression. 

This interdisciplinary approach not only enhances the precision of predictions but also 
provides a personalized aspect to the treatment of atherosclerosis. For instance, AI can 
continuously learn from new patient data, improving its predictions over time, while ABM 
and FEA simulate the biological and mechanical factors at play. Such a tool has the 
potential to significantly improve clinical decision-making by offering tailored predictions 
of plaque growth and rupture risk, leading to earlier and more effective treatments. 

1.2. Starting hypotheses 
The main hypotheses of the doctoral dissertation, derived from the research goal, the 
candidate's previous research activities, and the results of other authors in the field of 
research, consist of the following assumptions: 

• It is possible to create artificial intelligence networks for predicting the 
behavior of relevant parameters for plaque progression. 

• It is possible to create an ABM (agent-based modeling) model for modeling 
plaque progression and the interaction of drugs delivered directly into the 
artery. 

• It is possible to create an application for displaying a 3D model of the 
peripheral artery and the plaque within it. 

• It is possible to create a module as a part of DECODE platform API for real 
deformations within the ABM, thereby achieving realistic behavior of the artery 
and atherosclerotic plaque as deformable bodies. 
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1.3. Thesis structure 

In Chapter 1, the subject and objectives of the dissertation are defined, including the 
initial hypotheses and the contributions of the dissertation. 

Chapter 2 explains the anatomy of the cardiovascular system, covering blood vessels and 
the structure of arteries, with a particular focus on peripheral arteries. It also discusses 
the function and mechanics of blood flow through the cardiovascular system. 
Atherosclerosis is introduced as a significant health concern. The causes, progression, and 
complications of atherosclerosis are discussed, highlighting the importance of 
understanding its impact on cardiovascular health. 

Chapter 3 delves into artery biomechanics, explaining the mechanical forces acting on 
arterial walls and their role in the development and progression of atherosclerosis. The 
interaction between arterial structure and plaque formation is emphasized. 
Subsequently, the diagnostic methods for atherosclerosis, including imaging techniques 
such as ultrasound, angiography, and magnetic resonance imaging, are explored. The role 
of these technologies in early detection and ongoing monitoring of plaque progression is 
discussed as well as current treatment methods for atherosclerosis, both surgical and 
pharmacological, are reviewed. The effectiveness of different interventions is evaluated, 
with an emphasis on the need for improved treatment approaches. Bioengineering 
applications in cardiovascular medicine, highlighting the role of computational models in 
understanding atherosclerosis are presented next. The chapter discusses the use of Finite 
Element Analysis (FEA) in predicting plaque behavior and disease progression. Agent-
Based Modeling (ABM) is introduced as a novel method for simulating the progression of 
atherosclerosis. The state-of-the-art in ABM applications for cardiovascular diseases is 
reviewed, with a focus on its potential to improve patient outcomes. Subsequently, 
applications of Artificial Intelligence (AI) in cardiovascular medicine, explaining how AI-
based decision support systems are transforming diagnosis and treatment. The role of AI 
in analyzing complex datasets and improving clinical decision-making is explored. 

Chapter 4 presents experimental research on atherosclerotic plaque progression, 
describing the integration of ABM and FEA models. This chapter explains the coupling of 
computational fluid dynamics with ABM for a more comprehensive understanding of 
plaque dynamics. Sensitivity analysis of ABM parameters is conducted to evaluate the 
robustness and reliability of the model in predicting plaque progression under different 
conditions. Finally a surrogate model is developed to streamline computational analysis, 
reducing the time and resources needed for predicting plaque progression while 
maintaining accuracy. The process of dataset curation is detailed, outlining the methods 
used to collect, retrieve, and preprocess data for model training and validation, 
development and implementation of the Artificial Neural Network (ANN) model, designed 
to predict plaque progression based on patient-specific data detailed and performance of 
the ANN model evaluated. A comparative analysis of the developed models with existing 
research in the field, assessing the improvements and contributions of this work to 
cardiovascular medicine is presented. Finally, the integration into DECODE cloud 
platform via an API is explained.  

Chapter 7 presents the conclusions of the dissertation, summarizing the research 
findings, contributions to science and medicine, and directions for future research. 



 

4 
 

The final chapter contains the list of references. 

The final chapter is followed by the candidate’s biography and mandatory statements.   
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2. Cardiovascular system 

The cardiovascular system, composed of the heart and an extensive network of blood 
vessels, functions as the body's primary transport mechanism, delivering oxygen and 
essential nutrients to tissues and removing metabolic waste products (Figure 1. Human 
cardiovascular systemFigure 1) (Bădilă et al., 2017). This system is fundamental to 
maintaining homeostasis and ensuring the proper functioning of organs and tissues. A 
comprehensive understanding of the physiology and biomechanics of the cardiovascular 
system is crucial for elucidating the mechanisms underlying cardiovascular diseases, 
particularly thrombosis and atherosclerosis. These conditions are major contributors to 
morbidity and mortality worldwide, necessitating detailed investigation and innovative 
therapeutic approaches (Cameron et al., 2020). 

 

Figure 1. Human cardiovascular system (Online resource 1) 

The heart serves as the „pump“ of the cardiovascular system and is divided into four 
chambers: two atria and two ventricles. These chambers are separated by septa, with the 
interatrial septum dividing the atria and the interventricular septum separating the 
ventricles. The chambers work in a highly coordinated manner to ensure the 
unidirectional flow of blood (Figure 2). 
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Figure 2. Heart physiology (Online resource 2) 

The right atrium is the upper right chamber that receives deoxygenated blood from the 
body through two large veins: the superior vena cava and the inferior vena cava. The 
superior vena cava drains blood from the upper part of the body, including the head and 
arms, while the inferior vena cava carries blood from the lower regions. The right atrium 
also receives blood from the coronary sinus, which drains deoxygenated blood from the 
heart's own circulation (Hall and Hall, 2020). Blood then flows from the right atrium into 
the right ventricle through the tricuspid valve, which prevents backflow during 
ventricular contraction. The right ventricle, with its relatively thin walls, pumps blood 
into the pulmonary circulation through the pulmonary valve and into the pulmonary 
artery. This artery branches into left and right pulmonary arteries that carry 
deoxygenated blood to the lungs for gas exchange. In the lungs, blood travels through 
capillaries surrounding the alveoli where carbon dioxide is exchanged for oxygen. This 
oxygen-rich blood then returns to the heart via four pulmonary veins, entering the left 
atrium. Unlike other veins in the body, pulmonary veins carry oxygenated blood. The left 
atrium receives oxygenated blood from the lungs. This blood then passes through the 
mitral valve, which prevents backflow, into the left ventricle. The mitral valve, also known 
as the bicuspid valve, has two cusps and is structurally more robust than the tricuspid 
valve due to the higher pressures in the left side of the heart. The left ventricle, with its 
thick muscular walls, is the most powerful chamber of the heart. It must generate 
sufficient force to propel blood through the systemic circulation. Blood is ejected from the 
left ventricle into the aorta through the aortic valve. The aorta is the largest artery in the 
body and distributes oxygenated blood to all parts of the body via the systemic circulation. 
The heart valves ensure unidirectional blood flow and prevent backflow during the 
cardiac cycle. The tricuspid and mitral valves, located between the atria and ventricles, 
are known as atrioventricular valves. The pulmonary and aortic valves, located at the exits 
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of the right and left ventricles respectively, are known as semilunar valves. These valves 
open and close in response to pressure changes during the cardiac cycle, maintaining 
efficient circulation. 
The cardiac cycle comprises two main phases: diastole and systole. During diastole, the 
heart muscle relaxes, and the chambers fill with blood. The atrioventricular valves are 
open, allowing blood to flow from the atria to the ventricles. During systole, the heart 
muscle contracts, the atrioventricular valves close to prevent backflow, and the semilunar 
valves open to allow blood to be ejected into the pulmonary artery and aorta. The heart's 
ability to contract rhythmically is regulated by its intrinsic electrical conduction system. 
The sinoatrial (SA) node, located in the right atrium, acts as the natural pacemaker, 
generating electrical impulses that spread through the atria, causing them to contract. The 
impulses then reach the atrioventricular (AV) node, which delays the signal before 
transmitting it to the ventricles via the bundle of His and Purkinje fibers. This delay 
ensures that the atria have time to fully contract and empty their blood into the ventricles 
before ventricular contraction begins (Hall and Hall, 2020). 
 

2.1. Blood vessels 
The blood vessels are classified into three primary types: arteries, veins, and capillaries 
(Figure 3). Arteries carry the blood away from the heart and are characterized by thick, 
elastic walls that can withstand high pressure. Veins return blood to the heart and have 
thinner walls and valves that prevent backflow, facilitating the low-pressure return of 
blood. Capillaries are microscopic vessels where the exchange of gases, nutrients, and 
waste products occurs between the blood and tissues (Silverthorn, 2020). 
 

 

Figure 3. Artery, vein and capilary structure(Jouda et al., 2022) 

Arteries are blood vessels that carry blood away from the heart. They are characterized 
by their thick, elastic walls, which are designed to withstand and accommodate the high 
pressure generated by the heart's pumping action. The walls of arteries consist of three 
layers: the tunica intima, tunica media, and tunica adventitia. 
 
Tunica intima is the innermost layer is composed of a single layer of endothelial cells that 
provides a smooth surface for blood flow and is crucial for vascular homeostasis. It 
consists of the epithelium, the innermost layer composed of a single layer of flattened 
endothelial cells that form a smooth lining that reduces friction as blood flows through 
the vessel followed by a subendothelial layer that consists of loose connective tissue that 
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provides structural support and the internal elastic lamina, a well-defined layer of elastic 
fibers that provides flexibility and allows the vessel to stretch and recoil. 
 
Tunica Media is the middle layer that is the thickest and contains smooth muscle cells and 
elastic fibers. This layer is responsible for the contractility and elasticity of the artery, 
allowing it to expand and recoil with each heartbeat. It consists of smooth muscle cells 
arranged in concentric layers that control the diameter of the artery through contraction 
and relaxation, which regulates blood pressure and flow. Elastic fibers of tunica media are 
interspersed among the smooth muscle cells and provide the artery with the ability to 
stretch and recoil with the pulsatile flow of blood followed by the external elastic lamina 
present in larger arteries for additional elasticity. 
 
Tunica adventita, also known as the tunica externa is the outer layer composed of 
connective tissue that provides structural support and protection to the artery. Its 
outermost layer is made up of connective tissue, primarily collagen fibers, which anchor 
the artery to surrounding tissues and provide structural integrity. Vasa vasorum are small 
blood vessels that supply blood to the walls of large arteries and nervi vasorum are nerves 
that innervate the blood vessel wall, particularly influencing the smooth muscle tone 
(Silverthorn, 2020). 
 
Arteries can be categorized into several types based on their size, structure, and function, 
each playing a unique role in maintaining hemodynamic stability. Elastic arteries are the 
largest arteries in the body, including the aorta and its major branches, such as the 
brachiocephalic, common carotid, and subclavian arteries. These arteries have a 
substantial amount of elastic tissue in their walls, particularly in the tunica media, which 
allows them to stretch and recoil with each heartbeat. This elasticity is vital for dampening 
the pulsatile nature of blood flow generated by the heart and ensuring a smooth, 
continuous flow of blood throughout the arterial system. Key functions of elastic arteries 
include acting as a pressure reservoir by expanding to accommodate the surge of blood 
while, during diastole, they recoil, maintaining pressure and propelling blood forward, 
followed by pressure dampening by smoothing out the pressure variations from the heart, 
providing a more consistent blood flow to the smaller arteries and arterioles. 
 
The brachiocephalic, common carotid, and subclavian arteries are responsible for 
delivering blood to the head, neck, and upper limbs, playing a crucial role in maintaining 
adequate circulation to these vital areas. Each of these arteries has distinct anatomical 
features, specific functions, and important clinical relevance. The brachiocephalic artery, 
also known as the brachiocephalic trunk, is one of the three major branches that originate 
from the aortic arch. It is unique in that it is the only one of these branches to bifurcate, 
providing a critical blood supply pathway to the right side of the head and neck and the 
right upper limb. The brachiocephalic artery travels upward until it divides into the right 
common carotid artery and the right subclavian artery. This bifurcation occurs at the level 
of the right sternoclavicular joint. The common carotid arteries are vital for supplying 
blood to the head and neck. There are two common carotid arteries,  the right common 
carotid artery, which originates from the brachiocephalic artery, and the left common 
carotid artery, which directly branches off the aortic arch. The subclavian arteries are 
major arteries that supply blood to the upper limbs. The right subclavian artery branches 
off from the brachiocephalic artery, while the left subclavian artery directly originates 
from the aortic arch. 
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Muscular arteries are medium-sized arteries that distribute blood to specific organs and 
tissues. Examples include the radial, femoral, and coronary arteries. Unlike elastic 
arteries, muscular arteries have a thicker tunica media composed mainly of smooth 
muscle cells, which gives them greater control over blood flow through vasoconstriction 
and vasodilation. Their key functions include blood distribution as they direct blood to 
various parts of the body based on the body’s needs and regulation of blood flow and 
pressure as their muscular walls can contract or relax to regulate the amount of blood 
flowing to different tissues, maintaining systemic blood pressure. 
 
The coronary arteries are a unique subset of muscular arteries with the crucial task of 
supplying blood to the heart muscle, or myocardium. Their structure and function are 
finely adapted to meet the heart’s high metabolic demands, ensuring that the myocardium 
receives a continuous and adequate supply of oxygen and nutrients. Given the heart’s role 
as the central pump of the circulatory system, maintaining the health and functionality of 
the coronary arteries is essential for overall cardiovascular health. The coronary arteries 
are strategically positioned to optimize blood delivery to the heart muscle (Figure 4). 
They originate from the base of the aorta, just above the aortic valve, ensuring they 
receive the freshest, most oxygen-rich blood immediately after it is pumped from the left 
ventricle. The left coronary artery (LCA) quickly bifurcates into two major branches, the 
left anterior descending (LAD) artery that travels down the front of the heart, supplying 
blood to the front and bottom of the left ventricle and the front of the septum, the 
circumflex artery that encircles the heart muscle, providing blood to the outer side and 
back of the heart. The right coronary artery (RCA) runs along the right side of the heart 
and primarily supplies the right atrium, right ventricle, and parts of the bottom portion of 
both the left ventricle and the septum and branches into the posterior descending artery 
(PDA) which supplies the back of the heart. The coronary arteries are integral to the 
heart’s performance. By providing a continuous supply of oxygen and essential nutrients, 
they ensure the myocardium maintains its vigorous contractile function. This is especially 
critical during periods of increased physical activity when the heart's demand for oxygen 
escalates (Silverthorn, 2020). 
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Figure 4. Coronary arteries (Online resources 3) 

Peripheral arteries encompass all arteries outside the heart and brain, with a primary role 
in supplying blood to the limbs and peripheral organs. These arteries are crucial for 
maintaining the health and functionality of various tissues throughout the body. Key 
examples of peripheral arteries include the femoral, popliteal, and iliac arteries, each of 
which plays a vital role in the vascular system. Peripheral arteries are characterized by 
their extensive branching and distribution, ensuring comprehensive blood supply to the 
extremities and peripheral organs. The femoral artery is a major blood vessel in the thigh 
and the main arterial supply to the lower limb. It continues from the external iliac artery 
and branches into the deep femoral artery, which supplies blood to the deep structures of 
the thigh. The femoral artery continues with the popliteal artery which runs through the 
popliteal fossa (behind the knee) and branches into the anterior and posterior tibial 
arteries, supplying blood to the lower leg and foot. The common iliac arteries branch from 
the aorta and further divide into the internal and external iliac arteries. The internal iliac 
arteries supply the pelvic organs, while the external iliac arteries continue as the femoral 
arteries to supply the lower limbs. 
Peripheral arteries are essential for delivering oxygenated blood to tissues throughout 
the body, supporting various physiological functions necessary for maintaining 
homeostasis and overall health. 
 
Arteries branch into smaller vessels known as arterioles, which regulate blood flow into 
capillary beds through the contraction and relaxation of smooth muscle cells. This process 
is crucial for controlling blood pressure and directing blood flow to specific tissues based 
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on their metabolic needs. They have a thin tunica media composed of one or two layers of 
smooth muscle cells. 
 

2.2. Atherosclerosis 
Atherosclerosis of the coronary arteries is a chronic, progressive condition characterized 
by the buildup of plaque within the arterial walls. Coronary artery disease (CAD), more 
specifically coronary atherosclerosis (CATS), is one of the leading causes of death 
worldwide, accounting for approximately 17.9 million deaths annually (Su et al., 2023). It 
is a condition marked by the accumulation of plaque on the artery wall, which is made up 
of fat, cholesterol, calcium, and other components. This causes arteries to gradually 
narrow, eventually occluding and preventing blood flow (Libby et al., 2011) (Figure 5). 

 

Figure 5. Atherosclerotic progression and thickening of the artery (Hirahatake et al., 2021) 

 
The most prevalent signs and symptoms of CAD are chest pain and discomfort, which are 
medically known as angina (Shao et al., 2020). Excessive plaque buildup in the arteries, 
which obstructs blood flow to the heart and the rest of the body, causes the angina. 
Reduced oxygen and nutrition delivery as a result of this insufficient blood flow runs the 
risk of causing tissue damage and, in extreme circumstances, even death (Ahmed, 2016). 
Obesity, physical inactivity, an unhealthy diet, smoking, a family history of CAD or heart 
disease, and comorbidities such as diabetes, high blood pressure, and elevated blood 
cholesterol levels are all risk factors contributing to coronary artery disease (Yusuf et al., 
2020). The significance of early detection and prevention techniques is emphasized by 
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the fact that many of these characteristics can be altered by alterations in lifestyle and 
medical treatment (Arnett et al., 2019). Aside from causing partial or total blockage of 
arteries, plaque can separate from the artery wall and flow into the bloodstream, resulting 
in an acute thrombotic event (Bentzon et al., 2014). This can lead to a heart attack or a 
stroke, which both have high morbidity and death rates (Benjamin et al., 2018). It is 
essential to comprehend the relevance of factors influencing the evolution of 
atherosclerotic lesions in order to properly treat and prevent future cardiac events. 
Inflammation, endothelial dysfunction, and oxidative stress are a few of the mechanisms 
that have been linked to the development of atherosclerosis in studies (Higashi, 2022). It 
has been demonstrated that pharmaceutical therapies that target these processes, such 
as statins and antihypertensive drugs, lower the incidence of CAD-related events 
(Bertrand et al., 2016). In addition, crucial elements of CAD management and prevention 
include stress management, regular physical activity, a heart-healthy diet, and quitting 
smoking (Westland et al., 2020). These adjustments can enhance cardiovascular health 
overall, lower the risk of future cardiac events, and slow the development of 
atherosclerosis. Successful treatment and prevention of coronary artery disease depend 
on an understanding of the variables influencing the development of atherosclerotic 
plaques. It is possible to lessen the overall burden of CAD and enhance patient outcomes 
by focusing on modifiable risk factors and the underlying processes of atherosclerosis. It 
is well known that atherosclerosis occurs because of an interplay of a variety of factors. 
The correlations of these factors to atherosclerosis is explored computationally in order 
to aid physicians in treating the exact cause of CATS, however research has found that 
most commonly several factors influence characteristics and hence optimal treatment 
strategy in the case of arterial plaque (Lechner et al., 2019). For this reason, it is crucial to 
apply a multiscale approach to analysis of risk factors leading to CATS, starting from cells 
that make up the coronary arteries, through tissues to the entire organism and its 
environment (Devinder et al., 2020). Pinpointing the most significant combination of risk 
factors for CATS development and treatment prognosis would enable physicians to target 
the disease with optimal treatment strategy and enable better patient outcomes.  
The development of atherosclerotic plaques in the coronary arteries typically progresses 
through the following stages (Rafieian-Kopaei et al., 2014) (Figure 6):  

• endothelial dysfunction 
• lipid accumulation and foam cell formation 
• plaque progression 
• plaque destabilization and rupture 
• thrombus formation and occlusion 
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Figure 6. Atherosclerosis progression (Bardin, 2022) 

 
The initial step in atherosclerosis is endothelial injury, which can be caused by factors 
such as hypertension, smoking, hyperlipidemia, and diabetes. This injury leads to 
increased permeability and adhesion of leukocytes to the endothelium. Low-density 
lipoprotein (LDL) cholesterol penetrates the damaged endothelium and accumulates in 
the intima. Oxidized LDL (oxLDL) is particularly atherogenic and triggers an inflammatory 
response. Monocytes adhere to the endothelium, migrate into the intima, and differentiate 
into macrophages. These macrophages ingest oxLDL and transform into foam cells, 
creating fatty streaks. Smooth muscle cells migrate from the media to the intima, 
proliferate, and produce extracellular matrix components such as collagen and elastin. 
This leads to the formation of a fibrous cap over the lipid core, forming a stable plaque. 
Plaques can become unstable due to continuous inflammation and enzymatic degradation 
of the fibrous cap. If the cap ruptures, it exposes the underlying thrombogenic material, 
leading to platelet aggregation and thrombus formation. Thrombus formation can 
partially or completely occlude the coronary artery, leading to acute coronary syndromes 
such as unstable angina, non-ST-segment elevation myocardial infarction (NSTEMI), or 
ST-segment elevation myocardial infarction (STEMI) (Rafieian-Kopaei et al., 2014). 
 
Atherosclerosis of the peripheral arteries, often referred to as peripheral artery disease 
(PAD), is a chronic condition characterized by the accumulation of plaques within the 
arterial walls, leading to narrowed and hardened arteries that impair blood flow to the 
limbs. This condition primarily affects the arteries that supply the legs and can result in 
significant morbidity. A comprehensive understanding of the pathophysiology, clinical 
manifestations, diagnostic approaches, and treatment strategies for peripheral artery 
atherosclerosis is essential for effective management and prevention of severe 
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complications. Same as with CATS, PAD involves complex interactions among lipid 
metabolism, endothelial dysfunction, inflammatory responses, and genetic 
predispositions following the same pattern of plaque progression with the difference of 
the effect of thrombus formation, where in PAD it can partially or completely occlude the 
artery, leading to critical limb ischemia or acute limb ischemia, which can cause severe 
tissue damage (Signorelli et al., 2020). 
 

2.3. Artery biomechanics 
The mechanical properties of arteries are determined by their composition and structure, 
allowing them to perform essential functions in the cardiovascular system.  
Understanding artery biomechanics is crucial for diagnosing and managing 
cardiovascular diseases such as hypertension, atherosclerosis, and aneurysms. Changes 
in arterial compliance and stiffness are early indicators of vascular dysfunction and can 
predict cardiovascular risk (Carpenter et al., 2020). 
Arteries are highly elastic vessels due to the presence of elastic fibers in the tunica media, 
particularly in large elastic arteries such as the aorta and pulmonary arteries. This 
elasticity allows arteries to expand and recoil in response to changes in blood pressure, 
converting pulsatile flow from the heart into a steady flow through smaller vessels. 
Arterial compliance (C) is the ability of arteries to stretch and accommodate changes in 
blood volume without a significant increase in pressure. It is calculated as: 

𝐶 =
∆𝑉

∆𝑃
 

Eq. 1 

 
Where: 

• ∆𝑉 is change in blood volume 
• ∆𝑃 is change in pressure 

 
Distensibility refers to the ability of arteries to stretch in response to pressure changes. It 
is influenced by the elastic fibers in the tunica media and determines how much the artery 
can expand in response to each pulse of blood ejected from the heart. The distensibility 
coefficient (DC) is defined as: 

𝐷𝐶 =
∆𝐷

𝐷 × ∆𝑃
 

Eq.2 

 
 
Where: 

• ∆𝐷 is change in arterial diameter 
• 𝐷 is baseline arterial diameter 
• ∆𝑃 is change in pressure (usually the pulse pressure) 

 
Arteries exhibit viscoelastic behavior, meaning they demonstrate both elastic (reversible 
deformation) and viscous (time-dependent deformation) properties. The viscoelasticity 
of arteries helps them adapt to different flow conditions and resist damage from pressure 
fluctuations over time (Carpenter et al., 2020). 
 
Arteries contribute significantly to hemodynamics, the study of blood flow dynamics 
within the cardiovascular system. Arterial pressure-volume (P-V) relationships describe 
how changes in arterial pressure affect arterial volume. The compliance of arteries 
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influences these relationships, with stiffer arteries showing less change in volume for a 
given change in pressure. Arteries transmit the pulsatile pressure wave generated by each 
heartbeat (systole) from the heart to the periphery. Pulse wave velocity (PWV) is a 
measure of how quickly this wave travels along the arterial tree and is influenced by 
arterial stiffness. Increased PWV is associated with aging and vascular disease. Arteries 
act as a Windkessel, or pressure reservoir, dampening the pulsatile nature of blood flow. 
This effect is facilitated by the elasticity of large arteries, which store energy during 
systole and release it during diastole to maintain continuous flow (Carpenter et al., 2020).  
 
Arterial biomechanics plays a critical role in the initiation, progression, and clinical 
consequences of atherosclerosis. Mechanical forces such as shear stress and mechanical 
stretch influence endothelial function, arterial remodeling, and the development of 
atherosclerotic plaques (Carpenter et al., 2020). Understanding these biomechanical 
factors provides insights into disease mechanisms and informs strategies for preventing 
and managing cardiovascular diseases associated with atherosclerosis (Figure 7). 

 

Figure 7. Aterial biomechanics (Bacigalupi et al., 2024) 

Shear stress (𝜏) is the frictional force exerted by blood flow on the endothelial cells lining 
the arterial wall. It is calculated using the formula: 

𝜏 =  ∙
𝑑𝑢

𝑑𝑦
 

Eq. 3 

 
Where: 

•  is the blod viscosity 

• 
𝑑𝑢

𝑑𝑦
 is the velocity gradient perpendicular to the vessel wall (rate of change of blood 

flow velocity with respect to distance from the wall) 
 
Normal, laminar blood flow generates shear stress that promotes endothelial health and 
function. However, disturbed or turbulent flow patterns, such as those occurring at 
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arterial bends or bifurcations, can lead to low and oscillatory shear stress. These 
disturbed flow patterns are associated with endothelial dysfunction and the initiation of 
atherosclerosis . While low shear stress reduces the production of nitric oxide (NO) and 
other protective factors by endothelial cells, promoting inflammation and leukocyte 
adhesion to the arterial wall, oscillatory shear stress contributes to the activation of 
endothelial cells, increased permeability of the endothelium, and enhanced uptake of 
lipids into the arterial wall (Carpenter et al., 2020).  
Arterial biomechanics also involves mechanical stretch, particularly in regions where 
arteries experience higher pressures or pulsatile flow. Chronic exposure to increased 
mechanical stretch can lead to arterial remodeling, characterized by changes in arterial 
wall thickness, diameter, and composition. The pulsatile nature of blood flow subjects 
arteries to cyclic stretch during each cardiac cycle. This cyclic stretch influences vascular 
smooth muscle cell phenotype, extracellular matrix synthesis, and overall arterial wall 
structure (Carpenter et al., 2020). 
 

2.4. Diagnosis and treatment of atherosclerosis 
Diagnosis and treatment of atherosclerosis in these critical arteries are essential for 
preventing complications such as myocardial infarction (heart attack) and stroke. 
Diagnosis often begins with a thorough clinical evaluation, including assessing the 
patient's medical history, risk factors (e.g., smoking, hypertension, diabetes), and 
symptoms such as chest pain (angina) or transient neurological symptoms suggestive of 
stroke.  
Imaging is the most accurate diagnostic modality for atherosclerosis and imaging 
modalities used depend on the artery affected by atherosclerosis. Coronary angiography 
and coronary computed tomography (CTA) are the golden standard and it’s alternative 
for diagnosing coronary artery atherosclerosis respectively. Coronary angiography is 
considered the gold standard for evaluation of coronary artery disease (CAD). It is an 
invasive procedure involvung insertion of a catheter into a blood vessel (typically the 
femoral or radial artery) followed by injecting a contrast dye to outline the coronary 
arteries with X-ray imaging thus providing high-resolution images that reveal the 
presence, location, and severity of coronary artery narrowing or blockages (stenosis). It 
is essential for guiding decisions on interventions such as percutaneous coronary 
intervention (PCI) or coronary artery bypass grafting (CABG) in patients with significant 
CAD. Coronary CTA has emerged as a valuable non-invasive imaging technique for 
evaluating coronary artery anatomy and detecting plaque buildup and stenosis. It utilizes 
computed tomography (CT) technology to acquire detailed, three-dimensional images of 
the coronary arteries without the need for invasive procedures. Coronary CTA is 
particularly useful for assessing patients with suspected CAD, providing comprehensive 
visualization of plaque characteristics and coronary artery morphology. It plays a crucial 
role in risk stratification and treatment planning, especially in patients with equivocal 
stress test results or atypical symptoms (Robert et al., 2019). 
Optical cogerence tomography (OCT) is an intravascular imaging technique that uses 
near-infrared light to create high-resolution cross-sectional images of the arterial wall. 
Incorporating OCT alongside other imaging modalities enhances the diagnostic accuracy 
and therapeutic management of atherosclerosis, providing clinicians with comprehensive 
insights into arterial structure and pathology. Its ability to visualize fine details within the 
arterial wall makes OCT a valuable tool in both research and clinical practice for 
optimizing patient care and outcomes. It provides detailed visualization of arterial 
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morphology, including plaque characteristics such as thickness, composition (lipid-rich 
or fibrous), and presence of microcalcifications. It offers superior resolution compared to 
other imaging modalities, enabling precise assessment of plaque morphology and 
characteristics. This information aids in determining the vulnerability of plaques to 
rupture and guiding treatment strategies. Additionally, OCT helps in differentiating stable 
from unstable plaques, thereby assisting in risk stratification for future cardiovascular 
events. OCT is particularly useful during coronary interventions, such as percutaneous 
coronary intervention (PCI), to assess stent placement and optimize procedural 
outcomes. It allows clinicians to visualize stent apposition and expansion, detect edge 
dissections, and evaluate residual plaque burden. OCT-guided interventions contribute to 
improved procedural success rates and reduced complications (Prati et al., 2010, Bouma 
et al., 2017).  
 
When carotid atherosclerosis is suspected, either carotid ultrasound or carotid 
angiography are employed as imaging strategies. Carotid ultrasound is a non-invasive 
imaging modality that utilizes high-frequency sound waves to assess blood flow dynamics 
and detect abnormalities within the carotid arteries. It is particularly effective in 
evaluating carotid artery stenosis, a significant risk factor for ischemic stroke. Carotid 
ultrasound can visualize plaque formation, measure intima-media thickness (IMT) – an 
early marker of atherosclerosis, and assess blood flow velocities using Doppler 
ultrasound. This imaging technique is invaluable for identifying patients at high risk of 
stroke and guiding decisions on further management, including medical therapy or 
surgical intervention (Polak, 2001). Similar to coronary angiography, carotid angiography 
involves the insertion of a catheter into a blood vessel (typically the femoral artery) and 
the injection of contrast dye to visualize the carotid arteries under X-ray imaging (Jackson 
and Meaney, 2015, Sonka et al., 2000). This invasive procedure provides detailed images 
of the carotid artery anatomy and allows for precise assessment of narrowing or 
blockages (stenosis). Carotid angiography is typically reserved for cases where non-
invasive imaging results are inconclusive or when surgical intervention, such as carotid 
endarterectomy or carotid artery stenting, is being considered. It provides critical 
information for planning surgical procedures and optimizing patient outcomes in 
individuals with significant carotid artery disease (Pizzolato et al., 2014). 
 
The diagnostic process for PAD typically begins with a thorough clinical assessment. 
Healthcare providers evaluate the patient's medical history, including risk factors such as 
smoking, diabetes, hypertension, hyperlipidemia, and family history of cardiovascular 
disease (Peach et al., 2012). Symptoms suggestive of PAD include: 
 

• Intermittent Claudication: Pain, cramping, or fatigue in the legs during physical 
activity that resolves with rest. 

• Rest Pain: Pain in the feet or toes that worsens at night and improves when 
dangling the legs over the edge of the bed. 

• Non-healing Wounds: Ulcers or sores on the legs or feet that do not heal properly. 
• Coolness or Pallor: Reduced temperature or color changes in the affected limb 

compared to the unaffected limb. 
 
The ankle-brachial index (ABI) serves as the first tool in the diagnosis and assessment of 
peripheral artery disease (PAD), a condition where arteries supplying blood to the limbs 
become narrowed or blocked due to atherosclerosis (Crawford et al., 2016). This simple 
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yet effective test compares blood pressure measurements taken at the ankles and arms, 
offering valuable insights into the extent of arterial obstruction and consequent reduction 
in blood flow to the legs. During the ABI test, a healthcare provider uses a Doppler 
ultrasound probe to measure systolic blood pressure in both arms and both ankles. This 
non-invasive procedure involves applying the probe to these areas to detect and record 
blood flow sounds, which are indicative of arterial pressure. The ABI is calculated by 
dividing the highest systolic blood pressure measured at the ankle by the highest systolic 
blood pressure measured in either arm. A normal ABI falls within the range of 0.90 to 1.30, 
indicating relatively unobstructed blood flow to the lower extremities. Conversely, an ABI 
lower than 0.90 suggests the presence of PAD, with severity categorized as follows: 
 

• An ABI between 0.70 and 0.90 typically indicates mild PAD, where arterial 
narrowing may cause intermittent claudication (leg pain during activity). 

• An ABI ranging from 0.40 to 0.70 signifies moderate PAD, characterized by more 
pronounced symptoms and greater impairment in blood flow. 

• An ABI less than 0.40 indicates severe PAD, where critical limb ischemia may 
occur, potentially leading to tissue damage and non-healing wounds. 
 

Interpreting ABI results allows healthcare providers to tailor treatment plans accordingly, 
aiming to alleviate symptoms, prevent disease progression, and reduce the risk of 
complications such as limb amputation. Regular monitoring of ABI over time helps track 
disease progression and assess the effectiveness of therapeutic interventions, including 
lifestyle changes, medications, and surgical procedures aimed at improving blood flow 
and enhancing quality of life for individuals with PAD (Casey et al., 2019). 
 
Advanced imaging techniques play a crucial role in the comprehensive evaluation and 
management of peripheral artery disease (PAD), providing detailed insights into arterial 
anatomy, blood flow dynamics, and the extent of arterial narrowing or occlusion. These 
imaging modalities are essential for confirming diagnosis, guiding treatment decisions, 
and assessing therapeutic outcomes. Duplex ultrasound combines traditional ultrasound 
with Doppler ultrasound technology to visualize blood flow in the arteries and detect 
abnormalities such as stenosis or occlusions. During the procedure, high-frequency sound 
waves are transmitted through tissues, and the echoes are captured to create images of 
blood vessels. Doppler ultrasound specifically measures the speed and direction of blood 
flow, allowing healthcare providers to assess the severity and location of arterial 
narrowing in real-time. Duplex ultrasound is particularly advantageous for evaluating 
PAD in the lower extremities, where it can accurately identify the presence of 
atherosclerotic plaques, measure blood flow velocities, and assess the hemodynamic 
significance of arterial lesions (Eiberg et al., 2010). 
CTA is a non-invasive imaging technique that utilizes computed tomography CT 
technology to generate detailed, three-dimensional images of the arteries. It involves the 
intravenous injection of contrast dye, which highlights the vascular structures and 
enables visualization of arterial anatomy with high spatial resolution. CTA is highly 
effective in identifying areas of stenosis, occlusion, or plaque buildup in patients 
suspected of having PAD. It provides comprehensive anatomical information that helps 
healthcare providers plan interventions such as angioplasty or stenting, assess collateral 
circulation, and evaluate the suitability for surgical revascularization procedures 
(Fleischmann et al., 2006). 
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Magnetic resonance angiography (MRA) utilizes magnetic resonance imaging (MRI) 
technology to create detailed images of blood vessels without the use of ionizing radiation. 
MRA is particularly advantageous for evaluating complex arterial anatomy, including 
tortuous vessels or regions with calcified plaques, which may be challenging to visualize 
with other imaging modalities. MRA provides multiplanar images that allow for precise 
assessment of arterial stenosis, occlusion, and collateral circulation in patients with PAD. 
It is especially beneficial for individuals with contraindications to iodinated contrast 
agents used in CTA, such as those with renal insufficiency or allergies (Nelemans et al., 
2000).  
These advanced imaging modalities complement clinical evaluation and non-invasive 
tests like the ankle-brachial index (ABI), enhancing the accuracy of PAD diagnosis and 
facilitating tailored treatment strategies. By providing detailed anatomical and functional 
information, duplex ultrasound, CTA, and MRA enable healthcare providers to make 
informed decisions regarding medical management, endovascular interventions, or 
surgical procedures aimed at improving blood flow to the affected limbs. Regular 
utilization of these imaging techniques also supports longitudinal monitoring of disease 
progression and therapeutic efficacy, ensuring optimal care and outcomes for patients 
with PAD. 
 

2.5. Biochemical and genetic testing for atherosclerosis 
Biochemical and genetic testing for atherosclerosis supports a personalized approach to 
cardiovascular risk assessment and management (Deric et al., 2008, Paynter et al., 2016). 
Biochemical tests measure specific markers in the blood associated with inflammation, 
lipid metabolism, and endothelial dysfunction, all of which are key contributors to the 
development and progression of atherosclerosis (Medina-Leyte et al., 2021). A lipid 
profile measures levels of cholesterol, triglycerides, and lipoproteins in the blood. 
Elevated levels of low-density lipoprotein cholesterol (LDL-C) are a major risk factor for 
atherosclerosis, as LDL particles can infiltrate arterial walls and initiate plaque formation. 
Conversely, high levels of high-density lipoprotein cholesterol (HDL-C), often referred to 
as "good cholesterol," are associated with reduced cardiovascular risk. The ratio of total 
cholesterol to HDL-C is also informative, with higher ratios indicating increased risk 
(Bhatt, 2018, Toth, 2005). Markers such as C-reactive protein (CRP) and interleukin-6 (IL-
6) indicate systemic inflammation, which contributes to endothelial dysfunction and 
promotes atherosclerosis progression. Elevated levels of CRP, in particular, have been 
linked to increased cardiovascular risk independent of traditional risk factors. Endothelial 
dysfunction precedes atherosclerosis development (Held et al., 2017). Biomarkers such 
as soluble adhesion molecules (e.g., sICAM-1, sVCAM-1) and endothelin-1 reflect impaired 
endothelial function, facilitating leukocyte adhesion, vascular smooth muscle cell 
proliferation, and plaque formation (Ugurlu et al., 2013).  

Genetic testing assesses inherited variations that influence susceptibility to 
atherosclerosis and cardiovascular disease. While not routinely performed in clinical 
practice, genetic testing provides valuable insights into individual risk profiles and can 
guide personalized preventive strategies (Laan et al., 2018). Familial 
hypercholesterolemia FH is a genetic disorder characterized by high LDL-C levels from 
birth, significantly increasing the risk of premature atherosclerosis and cardiovascular 
events (Khera and Hegele, 2020). Genetic testing can identify mutations in genes such as 
LDLR (LDL receptor), APOB (apolipoprotein B), or PCSK9 (proprotein convertase 
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subtilisin/kexin type 9), which disrupt normal lipid metabolism and contribute to FH 
(Meshkov et al., 2021). Various single nucleotide polymorphisms (SNPs) associated with 
lipid metabolism, inflammation, and endothelial function have been linked to 
atherosclerosis risk. Examples include SNPs in genes encoding proteins involved in 
cholesterol transport (e.g., ABCA1)(Fitzgerald et al., 2010), inflammation (e.g., IL-6) 
(Schieffer et al., 2004), and oxidative stress pathways (Batty et al., 2022). Genetic risk 
scores (GRS) integrate multiple genetic variants associated with cardiovascular risk into 
a single score. They provide a quantitative assessment of genetic susceptibility to 
atherosclerosis and can stratify individuals into high, moderate, or low-risk categories. 
GRS are increasingly used in research and may eventually inform clinical decision-making 
regarding preventive therapies and lifestyle interventions (Christiansen et al., 2020).  
 

2.6. Treatment of atherosclerosis 
Effective management strategies aim to halt CATS progression, reduce plaque burden, 
prevent complications such as myocardial infarction and stroke, and improve overall 
cardiovascular health. Initially, patients are advised to make lifestyle modifications that 
include:  

• Adopting a heart-healthy diet low in saturated fats, trans fats, and cholesterol 
while emphasizing fruits, vegetables, whole grains, and lean proteins can lower 
LDL cholesterol levels and reduce inflammation. The Mediterranean diet, rich in 
olive oil, nuts, and fish, has shown particular benefit in reducing cardiovascular 
risk. 

• Engaging in regular physical activity improves cardiovascular fitness, lowers blood 
pressure, promotes weight loss, and enhances overall vascular health. Aerobic 
exercises such as brisk walking or cycling are recommended, aiming for at least 
150 minutes per week. 

• Quitting smoking significantly reduces cardiovascular risk by improving 
endothelial function, decreasing inflammation, and lowering the formation of 
atherosclerotic plaques. 

 
Pharmacotherapy for CATS includes: 

• Statins as first-line medications that lower LDL cholesterol levels and stabilize 
plaques. High-intensity statin therapy (e.g., atorvastatin, rosuvastatin) is 
recommended for most patients with atherosclerosis to achieve LDL-C reduction 
goals (Lee et al., 2018)  

• Antiplatelet agents like aspirin and other antiplatelet medications (e.g., 
clopidogrel) reduce the risk of thrombosis and cardiovascular events in patients 
with established atherosclerosis. Dual antiplatelet therapy may be considered in 
selected high-risk patients (Patrono et al., 2017)   

• Antihypertensive drugs for controlling blood pressure with medications such as 
ACE inhibitors, angiotensin II receptor blockers (ARBs), beta-blockers, or diuretics 
helps prevent plaque progression and reduces cardiovascular risk by maintaining 
optimal blood pressure levels (Nissen et al., 2004)  

• Antithrombotic therapy for selected patients with high-risk features such as recent 
myocardial infarction or atrial fibrillation, anticoagulant therapy (e.g., warfarin, 
direct oral anticoagulants) may be recommended to prevent thrombotic events 
(Parker and Storey, 2021)  
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In cases where lifestyle adjustments and pharmacotherapy fail, interventional and 
surgical procedures are advised and employed. Angioplasty is a procedure to widen 
blocked arteries, involves inserting a catheter into the site of blockage using imaging 
techniques like angiography. Before using drug-coated balloons (DCB) or drug-eluting 
stents (DES), pre-dilation with a percutaneous transluminal angioplasty (PTA) balloon 
catheter is recommended (Unverdorben et al., 2009). For DCB, the PTA balloon should be 
1mm smaller than the artery diameter, while for DES, it should match the artery's nominal 
diameter. The pressure applied should stay below the balloon's rated burst pressure. If 
high stenosis rates are present, a two-step pre-dilation using smaller then larger balloons 
is suggested. The balloon's diameter and length should match the vessel's size and lesion 
length respectively, with the total drug dose not exceeding 34,845ug. If residual stenosis 
remains above 50% after DCB use, stent placement is con-sidered. A successful procedure 
leaves ≤50% residual stenosis (non-stented subjects) or ≤30% (stented subjects). When 
deploying DES, correct stent positioning is crucial. The stent should be slowly deployed, 
aiming for an initial pressure that achieves a stent-to-vessel diameter ratio of about 1.1, 
held for 30 seconds. DES and DCB are two innovative medical technologies developed for 
the treatment of vascular diseases, including CAD and PAD. Both devices operate on the 
principle of lo-calized drug delivery to inhibit neointimal hyperplasia and restenosis, 
issues commonly associated with bare-metal stent implantation (Grüntzig et al., 1978, 
Abdullah et al., 2018, Lindquist and Schramm, 2018). DES have become a cornerstone of 
percutaneous coronary intervention (PCI) for the treatment of CAD since their 
introduction in the early 2000s (Moses et al., 2003). They are composed of a metallic 
scaffold coated with an antiprolif-erative drug and a polymer carrier material, designed 
to slowly release the drug over sev-eral weeks to. The drugs used in DES, such as paclitaxel 
or sirolimus, inhibit the growth of smooth muscle cells to reduce restenosis risk (Moses 
et al., 2003). Due to their effective-ness in the treatment of CAD, DES have also been used 
for PAD. Successive genera-tions of DES have aimed to improve upon earlier designs' 
limitations, with a focus on op-timizing drug delivery, reducing thrombosis risk, and 
enhancing biocompatibility (Bangalore et al., 2013). Despite initial concerns about late 
stent thrombosis (LST) and delayed endothelial heal-ing with first-generation DES, newer 
versions have demonstrated improved safety and ef-ficacy outcomes, with lower rates of 
LST and comparable or superior reductions in ISR (Bangalore et al., 2013). However, DES 
use comes with risks, including the prolonged presence of a foreign object in the artery, 
potentially increasing blood clot risk, and concerns about long-term safety(Cornelissen 
and Vogt, 2019). On the other hand, DCB, a more recent technology, consist of a balloon 
catheter coated with an antiproliferative drug, which is released during balloon inflation 
to treat vascular diseases (Byrne et al., 2014). They have been utilized primarily in PAD 
treatment and have shown promising results in reducing restenosis rates and improving 
clinical outcomes. DCB deliver their drug load during balloon inflation, with the drug 
typically com-bined with a carrier to facilitate transfer and retention in the arterial wall 
(Hossainy et al., 2008). In clinical trials, DCB have been found to be as effective as DES in 
treating lesions, with a lower risk of restenosis and less need for repeat procedures. DCB 
are especially effective in treating PAD, particularly in femoropopliteal and below-the-
knee lesions and have been investigated as an alternative to DES in CAD treatment 
(Cornelissen et al., 2019). While DCB have several advantages over DES, such as being less 
invasive as they do not require permanent im-plantation, they also come with their own 
set of limitations. These include the potential for uneven drug coating, leading to 
incomplete drug delivery, and risks of complications like dissection or perforation. Both 
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DES and DCB represent significant advancements in the treatment of vascular diseases. 
They share a common goal of localized drug delivery to inhibit restenosis but each has its 
unique sets of advantages and disadvantages. The choice between DES and DCB may 
depend on the specific characteristics of the patient and the disease, including the severity 
and location of the lesions, the patient's risk profile, and other factors. 
Comparative studies on DCB and DES in vascular disease treatment reveal no signif-icant 
difference in major adverse cardiovascular events at a one-year follow-up, according to 
Katsanos et al. (Katsanos et al., 2018). Yet, DCB were found to be associated with a lower 
risk of target le-sion revascularization (TLR) than DES. A two-year follow-up study by 
Tepe et al. also found no significant difference in the rate of primary patency, but DCB had 
a lower rate of clinically-driven TLR (Tepe et al., 2015). Further research indicates DCB 
have a lower restenosis risk and TRL than DES a year post-angioplasty, and they are more 
cost-effective when treating femoropopliteal artery disease due to their lower TLR and 
overall cost (Alfonso et al., 2018). 
Alternatively, surgical revascularization and carotid endarterectomy (CEA) are employed. 
Surgical revascularization is a crucial intervention for patients with advanced coronary 
artery disease (CAD), where the buildup of atherosclerotic plaque significantly restricts 
blood flow to the heart muscle (Slovut et al., 2012). This procedure, known as Coronary 
Artery Bypass Grafting (CABG), involves creating bypass grafts using healthy blood 
vessels sourced from elsewhere in the body, such as the saphenous vein or internal 
mammary artery (Alexander and Smith, 2016). These grafts are used to bypass narrowed 
or blocked coronary arteries, restoring proper blood flow to the heart muscle. CEA is 
typically recommended for symptomatic patients with severe carotid artery stenosis 
(usually greater than 70%) who have experienced transient ischemic attacks (TIAs) or 
strokes related to carotid artery disease. CEA involves surgically removing the buildup of 
atherosclerotic plaque from the inner lining of the carotid artery. This plaque removal 
reduces the risk of stroke by restoring proper blood flow to the brain. By removing the 
plaque, CEA reduces the risk of embolic stroke caused by plaque rupture and thrombus 
formation within the carotid artery (Alexander et al., 2016). 
 
Laser or rotational atherectomy are advanced interventional techniques employed in the 
treatment of peripheral artery disease and coronary artery disease when traditional 
methods like angioplasty or stenting may not be sufficient due to particularly dense or 
complex plaque formations within the arterial walls (Tomey et al., 2014). Laser 
atherectomy is particularly effective in cases where plaque has become calcified or 
otherwise resistant to traditional angioplasty techniques. It utilizes specialized catheters 
equipped with laser fibers to target and vaporize plaque deposits within the arteries. The 
procedure begins with the insertion of a catheter into the affected artery under 
fluoroscopic guidance. Once positioned, the laser is activated, emitting high-energy light 
pulses that vaporize the hardened plaque while sparing the arterial walls. The vaporized 
debris is removed from the bloodstream naturally. By effectively removing dense plaque, 
laser atherectomy improves blood flow through the treated artery, thereby alleviating 
symptoms such as claudication (leg pain) in PAD patients or angina in CAD patients. 
Compared to traditional surgical interventions, laser atherectomy minimizes trauma to 
the artery and surrounding tissues, which can expedite recovery times and reduce 
complications (Tsutsui et al., 2021). Rotational atherectomy is specifically effective in 
cases where plaque has become heavily calcified, making it difficult to compress with a 
balloon during standard angioplasty procedures. It involves the use of a specialized 
catheter equipped with a rotating burr at its tip. This burr, powered by a high-speed 
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motor, mechanically abrades and removes plaque deposits from within the arterial 
lumen. The procedure is performed similarly to angioplasty, with the catheter inserted 
through a small incision in the groin or wrist and advanced to the site of the arterial 
blockage under fluoroscopic guidance.  By mechanically ablating calcified plaque, 
rotational atherectomy restores arterial patency and improves blood flow to the affected 
region. Often used in conjunction with balloon angioplasty and stent placement, rotational 
atherectomy helps prepare the vessel for optimal stent deployment by creating a smooth 
arterial surface (Gupta et al., 2019).  
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3. Bioengineering in cardiovascular medicine 

3.1. Finite element analysis for atherosclerosis  
Finite element modeling of atherosclerosis plays a crucial role in understanding the 
biomechanical behavior of arterial walls under pathological conditions (Filipovic et al., 
2011, Filipovic, 2020, Filipovic et al., 2017, Filipovic et al., 2013). Computational models 
based on finite element analysis provide a powerful tool to simulate and analyze the 
complex mechanical interactions that occur within these diseased arteries (Saveljic et al., 
2020, Tomasevic et al., 2024). At its core, finite element modeling of atherosclerosis 
involves discretizing the arterial wall into small geometric elements, each represented by 
a set of mathematical equations that describe its mechanical behavior. These elements are 
interconnected at nodes, allowing researchers to simulate the distribution of stresses and 
strains throughout the arterial wall under various physiological conditions (Djorovic et 
al., 2020). Key factors influencing the mechanical behavior of atherosclerotic plaques 
include plaque composition (e.g., lipid core, fibrous cap), degree of calcification, and the 
overall geometry of the vessel. By incorporating these factors into finite element models, 
researchers can predict stress concentrations within the plaque, assess the risk of plaque 
rupture, and evaluate the effectiveness of different therapeutic interventions (Filipovic et 
al., 2011, Filipovic et al., 2014, Isailovic et al., 2017). Finite element models enable 
researchers to explore how changes in blood flow patterns, such as those caused by 
stenosis (narrowing of the artery), influence plaque development and progression. By 
integrating fluid-structure interaction simulations, these models can provide insights into 
the hemodynamic forces acting on the arterial wall and their role in plaque formation 
(Filipovic et al., 2011, Filipovic et al., 2013). Recent advancements in computational 
techniques, coupled with improvements in imaging modalities like MRI and CT 
angiography, have enhanced the accuracy and predictive capabilities of finite element 
models in studying atherosclerosis. These models not only contribute to our fundamental 
understanding of disease mechanisms but also hold promise for personalized medicine 
by guiding clinicians in making informed decisions regarding patient-specific treatment 
strategies. 
 
Biological systems exhibit behaviors that arise from the actions of individual cells and 
their interactions. Cells possess the ability to move, interact, reproduce, and undergo 
apoptosis. These cellular behaviors collectively influence the dynamics of multicellular 
biological systems. Therefore, modeling such systems necessitates accounting for 
intricate interactions among individual cells and environmental factors. Consequently, 
there is a growing trend towards conducting research at the multicellular level, employing 
various methodologies to model these complex biological systems. Behavior of complex 
multicellular systems in models is defined by representation of discrete autonomous 
entitites and examining their interactions on micro-level. This approach not only 
enhances our understanding of complex biological processes but also facilitates efficient 
and cost-effective virtual experiments (Johnson et al., 2018).  
Two commonly utilized systems include cellular automata models (CA) and agent-based 
models (ABM). Both approaches employ a bottom-up methodology where global system 
behaviors emerge from local interactions among individual cells, each explicitly 
represented with defined local behavioral rules (Hwang et al., 2009). Although CA and 
ABM share similarities, their primary distinction lies in how they model the environment. 
The opperation of these models is based on a lattice system with cells occupying specific 
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network elements and transitioning between them (Hwang et al., 2009). Alternatively, 
models can exist in a continuum (lattice-free) space, allowing cells to reside anywhere 
within the computational domain. Here, the position of each cell is often determined by 
solving kinematic or dynamic equations of motion, offering ABM a potential advantage in 
realism over cellular automata, which impose stricter spatial constraints (Zahedmanesh 
and Lally, 2012). In general, both CA and ABM strategies are suitable for modeling 
complex behaviors such as those found in regulatory processes of the cardiovascular 
system, where individual cell behaviors intricately influence macroscopic outcomes that 
are challenging to predict straightforwardly. 
 

3.2. ABM in cardiovascular medicine 
 
When the behavior of complex biological systems relies heavily on interactions among 
multiple cells, which are themselves influenced by changes in micro-environmental 
factors, employing a multi-scale modeling approach becomes essential. Therefore, 
methodologies like CA and ABM are used for investigating various aspects of 
cardiovascular tissue and system regulation (Zahedmanesh & Lally, 2012). 
 
ABM has emerged as a powerful computational tool in cardiovascular medicine, enabling 
researchers and clinicians to simulate and analyze the complex interactions among 
biological, environmental, and behavioral factors that influence cardiovascular health 
(Bhui and Hayenga, 2017, Blagojevic et al., 2022, Corti et al., 2019, Corti et al., 2020b, Corti 
et al., 2021, Corti et al., 2022, Corti et al., 2023, Tomasevic et al., 2024, Filipovic et al., 2023, 
Tsompou et al., 2022). By modeling individual entities, or "agents," and their interactions 
within a defined system, ABM provides valuable insights into the dynamics of 
cardiovascular diseases, particularly those related to atherosclerosis, hypertension, and 
heart failure (Tsompou et al., 2022). This innovative approach facilitates the exploration 
of scenarios that are often challenging to assess through traditional statistical methods or 
experimental designs. At its core, ABM is a simulation technique that allows for the 
representation of individual agents (e.g., cells, tissues, organs) and their behaviors in a 
defined environment. Each agent operates based on a set of rules and interacts with other 
agents and the environment according to specific protocols. This individual-based 
perspective captures the heterogeneity within populations and enables the modeling of 
complex systems where emergent behaviors arise from the interactions of simpler 
entities (Bhui and Hayenga., 2017). 
 
In cardiovascular medicine, ABM can simulate various processes, such as the progression 
of atherosclerosis, the response of the cardiovascular system to interventions, and the 
impact of lifestyle factors on heart health (Hayenga, 2011, Hayenga et al., 2011). By 
representing individual patients or cells, ABM models can incorporate a wide range of 
variables, including genetic predispositions, metabolic states, and lifestyle choices, to 
better understand their contributions to cardiovascular disease risk and outcomes (Corti 
et al., 2019; Corti et al., 2020; Corti et al., 2022). 
Atherosclerosis is a prime candidate for ABM due to its multifactorial nature and the 
interplay of various biological processes. ABM can simulate the progression of 
atherosclerotic plaques by modeling the behavior of individual cells, such as endothelial 
cells, smooth muscle cells, and macrophages, within the arterial wall (Corti et al., 2019; 
Tomasevic et al., 2024). Each cell type can have specific rules governing its behavior, 
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including proliferation, migration, apoptosis, and response to inflammatory stimuli. For 
instance, an ABM approach can capture how lipid accumulation, oxidative stress, and 
inflammatory responses contribute to plaque formation and stability. By simulating the 
interactions between lipid particles and arterial wall cells, researchers can observe how 
different conditions, such as hyperlipidemia or hypertension, influence the development 
of atherosclerosis over time. These models can also explore how therapeutic 
interventions, such as statins or anti-inflammatory agents, affect plaque dynamics and 
overall cardiovascular risk (Bhui et al., 2017; Blagojevic et al., 2022; Corti et al., 2019; 
Corti et al., 2020; Corti et al., 2022; Tomasevic et al., 2024; Filipovic et al., 2023; Tsompou 
et al., 2022)..  
ABM is also valuable for modeling cardiovascular responses to various stimuli, including 
pharmacological interventions, exercise, or dietary changes. For instance, an ABM can 
simulate the effects of a lifestyle intervention, such as increased physical activity, on the 
cardiovascular system. By modeling individual agents that represent patients with 
varying levels of baseline fitness and health status, researchers can assess how different 
exercise regimens impact cardiovascular health, including changes in blood pressure, 
heart rate, and overall fitness. ABM can also be used to evaluate the effects of medical 
treatments on patient outcomes. By incorporating clinical data and treatment protocols, 
ABM can simulate how different patients respond to specific therapies based on their 
unique profiles. This personalized approach allows for the exploration of tailored 
treatment strategies, identifying patients who more prone to benefiting from tailored 
interventions and under what circumstances. 
 

3.3. State-of-the art in ABM for atherosclerosis 
For instance, (Pappalardo et al., 2008) introduced a 2D agent-based model aimed at 
simulating early-stage atherosclerosis and the subsequent immune system response. 
Their model comprehensively represented the critical entities and interactions involved 
in immune processes that regulate atherogenesis. In a subsequent study (Pappalardo et 
al., 2008), they explored the heightened risk of atherosclerosis due to short-term 
elevations in LDL concentration, assessing whether reducing LDL levels could mitigate 
this risk. Curtin and Zhou (2014) (Curtin and Zhou, 2014) developed a 2D ABM for 
simulation of restenosis in blood vessels occuring after angioplasty and bare-metal stent 
implantation. Their research highlighted how different vessel geometries and stent 
placements influence restenosis development, using realistic pathologic geometries and 
modeling atherosclerotic plaque as an inert entity. Olivares et al. (2017) (Olivares et al., 
2017) advanced this approach with a 3D ABM to simulate early foam cell formation in the 
intima. They focused on dynamic interactions involving LDL oxidation, persistence of 
oxidized LDL, and macrophage transformation into foam cells. 
 
In addition to discrete methods like CA and ABM, robust numerical methods such as finite 
element modeling (FEM) can be integrated into hybrid frameworks. FEM offers 
advantages in quantification of arterial wall stress and wall shear stress (WSS) role 
exploration in atherosclerosis pathogenesis, linking mechanotransduction at the cellular 
level. Diseases associated with pathogenesis incorporate the release of specific chemicals 
in the endothelium, permeability of low-density lipoprotein, cellular and extracellular 
functions, proliferation of smooth muscle cell, and the dynamics of extracellular matrix 
(ECM) (Chatzizisis et al., 2007).  
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Zahedmanesh and colleagues developed an innovative hybrid biological modeling 
framework that integrates a 2D agent-based model (ABM) in continuum space with a 
finite element model (FEM) (Zahedmanesh & Lally, 2012). The FEM component was 
employed to quantitatively assess von Mises stresses, crucial for evaluating arterial 
damage following stent deployment. Meanwhile, the ABM in their work focused on 
simulating the migration, proliferation, and degradation of ECM, as well as its synthesis 
within the arterial wall due to restenosis as quantified by the FE analysis. Previously, this 
modeling framework successfully elucidated vascularization patterns in tissue-
engineered blood vessels, revealing insights into how scaffold compliance and loading 
regimes influence the growth of vascular smooth muscle cells and their role in intimal 
hyperplasia development (Zahedmanesh & Lally, 2012). 
Garbey and collaborators developed another hybrid computational framework that 
integrates Partial Differential Equations (PDE) with ABM to study vascular adaptation 
post-acute interventions (Garbey et al., 2015). PDEs accurately describe continuum 
mechanics, calculating hemodynamic forces and stress-strain relationships defining the 
vascular environment. In contrast, the fixed grid ABM comprehensively models discrete 
cellular elements within the tissue, tracking cell dynamics including proliferation, 
apoptosis, and ECM production or degradation. This computational approach was further 
refined to relax assumptions, particularly regarding cellular motion which ideally should 
be computed in a continuum space rather than on a discrete grid. This advancement 
allows for a more realistic simulation of biological laws governing cellular behavior and 
the active role of membrane interfaces between vascular layers (Garbey et al., 2019). 
 
Current multiscale models of atherosclerosis capture the complex interplay between 
hemodynamics and arterial wall remodeling during plaque development and 
atherogenesis (Bhui & Hayenga, 2017; Corti et al., 2019; Corti et al., 2020). These 
frameworks are based on coupled stochastic ABM for cellular dynamics and a 
hemodynamics module for blood flow computation. Bhui and Hayenga (2017) 
incorporated a molecular module to describe transport processes of inflammatory 
cytokines and LDL within arterial walls, applied to a 3D idealized coronary artery model 
to investigate the role of wall shear stress (WSS) in leukocyte trans-endothelial migration 
(TEM) and plaque progression. Computational fluid dynamics (CFD) simulations 
computed the WSS profile, used for initializing the ABM process. During plaque growth, 
changes in luminal geometry simulated by ABM are coupled with CFD to calculate 
hemodynamics in current vascular geometry and update WSS distribution. 
 
In their implementation, a 3D ABM model featured a uniform arterial wall layer covered 
by endothelial cells and leukocytes as active agents. Behavioral rules governed 
endothelial adhesion, TEM, and other cellular processes, with leukocyte adhesion 
probability influenced by WSS, circulating cytokines, and leukocyte concentration. TEM 
was defined relative to arterial stiffness, while LDL transport and accumulation in the 
arterial wall depended on WSS and systemic LDL concentration, modeled according to 
Fick's law. Rules governing LDL oxidation and phagocytosis by monocyte-derived foam 
cells were applied, incorporating Glagov's remodeling theory which preserves lumen area 
during initial atherosclerosis phases through compensatory outward remodeling (Glagov 
et al., 1987).  
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3.4. Applications of AI in medicine  
AI in healthcare is a rapidly evolving field, offering promising solutions to some of the 
most pressing challenges in this sector. However, the integration of AI into healthcare also 
raises various ethical, legal, and social issues. Consequently, there is a growing need for 
comprehensive regulations to govern the use of AI in healthcare (Shearer et al., 2021). In 
the changing world of artificial intelligence, the European Union stands as a predecessor 
of balance between innovation and the safeguarding of fundamental rights. The EU’s 
regulatory framework for AI is carefully crafted, embodying a risk-based approach that 
distinguishes between high-risk and low-risk AI applications. High-risk AI systems, given 
their profound impact on safety and fundamental rights, have stringent requirements 
imposed onto them. These encompass robust data governance to ensure data quality and 
representativeness, comprehensive documentation for traceability, and explicit 
transparency to inform users about the AI’s capabilities and limitations. The essence of 
human oversight is not lost, mechanisms are designed in a manner that allows human 
intervention, ensuring that AI operates within the bounds of safety and ethics. On the 
other hand, low-risk AI systems enjoy a breath of freedom, with regulations that are 
designed to foster innovation and widespread adoption. Every high-risk AI system is 
subjected to a rigorous conformity assessment, and those that are deemed approved are 
marked with the CE marking - a certificate to their compliance with the standards of the 
EU. Yet, in this world of artificial intelligence, there are practices that the EU holds in 
prohibition, particularly those that violate fundamental rights. Social scoring and 
manipulative practices are banished, and the use of AI for biometric identification is 
stringently limited, especially in the sanctuaries of public spaces. The guardians of these 
regulations are the national supervisory authorities, established in each EU member state, 
overseen by the watchful eyes of the European Artificial Intelligence Board. This board, a 
congregation of representatives from each member state and the Commission, ensures 
the harmonious application of AI rules across the grandeur of the EU. In the pursuit of 
innovation and excellence, the EU nurtures a dynamic AI ecosystem. Small and medium-
sized enterprises and startups, the leaders of innovation, are supported with special 
provisions, ensuring that the blossoms of their creativity enriches the AI landscape. The 
EU’s outlook is not limited to its borders, it extends globally, aiming to shape international 
norms and standards for AI. It is a dance of diplomacy and technology, facilitating 
international data flows while upholding the sanctity of data protection. Public 
engagement and ethical considerations are the soul of the EU’s AI regulation. Both public 
and a variety of stakeholders, are involved in the process of AI development and 
governance. In this narrative, the EU stands not as a solitary entity but as a collective, 
where innovation, ethics, and public welfare are intertwined in the artificial intelligence 
(Krishnan Ganapathy, 2021). 

The European Union's Artificial Intelligence Act is a comprehensive document that 
delineates the regulatory landscape for AI applications, with a particular focus on high-
risk systems. It carefully outlines the Parliament's position on various AI applications, 
underscoring the imperative for stringent regulations to mitigate associated risks. 
Biometric categorization systems and predictive policing emerge as focal points of 
regulatory scrutiny. The Parliament advocates for a prohibition on biometric systems that 
utilize sensitive characteristics, such as gender, race, and ethnicity. Similarly, predictive 
policing systems, especially those rooted in profiling, location, or past criminal behavior, 
are earmarked for stringent oversight. The document elaborates on the expanded 
definition of high-risk AI systems, encapsulating those that pose a 'significant risk' to 
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health, safety, fundamental rights, or the environment. AI applications deployed in 
political campaigns and by very large online platforms, as defined under the Digital 
Services Act, are categorised as high-risk, warranting enhanced regulatory oversight. The 
Act also addresses general-purpose AI and foundation models, imposing obligations on 
providers to safeguard fundamental rights and democracy. Generative AI models, 
exemplified by systems like ChatGPT, are subjected to stringent transparency obligations, 
ensuring accountability and ethical deployment. In the realm of governance and 
enforcement, the Act empowers national authorities with unprecedented access to both 
trained and training models of AI systems. It proposes the establishment of an AI Office to 
facilitate the harmonised application of the AI Act across member states. The Act 
underscores its commitment to fostering innovation and research, with a pronounced 
emphasis on the development and deployment of free and open-source AI. High-risk AI 
systems are subjected to a new regulatory regime, encompassing ex-ante conformity 
assessment and mandatory registration in an EU-wide database. These systems must 
adhere to stringent requirements spanning risk management, testing, technical 
robustness, data training and governance, transparency, human oversight, and 
cybersecurity (Novelli et al., 2023).  

United Kingdom´s National Health Services, the NHS, which offers free health care, is at a 
key point when it comes to regulations associated with AI. Recent advancements, 
especially in machine learning and deep learning, have led to algorithms that can perform 
tasks comparable to doctors, such as diagnostics and managing complex treatments. The 
NHS's extensive data on citizens' health throughout their lives positions it to be a leader 
in healthcare AI. The NHS collects a vast amount of patient data daily, which is invaluable 
for training AI systems. However, this raises significant ethical and legal concerns, 
particularly regarding potential misuse. Public trust in how the NHS handles patient data 
is crucial, and incidents like the unauthorized use of data from 1.6 million patients by the 
Royal Free NHS Trust for AI development have raised concerns. Ensuring explicit patient 
consent for the use of their data in AI is essential. However, the actual use of AI in the NHS 
is still limited, primarily due to the lack of comprehensive policy guidance (Hart, 2024). 

In response to the growing importance of AI, the UK government published a code of 
conduct in 2018. This code outlines expectations for AI development in the NHS, focusing 
on proper data handling, algorithmic transparency, and accountability. It aims to provide 
a policy framework for creating safe and effective AI applications in healthcare. However, 
this code is still in the initial consultation stage, indicating ongoing development. The need 
for real-life data in machine learning presents ethical dilemmas, especially when patient 
data are used beyond their original collection purpose. Public trust could be eroded if such 
incidents recur, potentially leading patients to refuse to share their information. The 
introduction of a national data opt-out program in 2018 has given patients more control 
over their data, but maintaining trust and ethical standards remains a challenge (Piel et 
al., 2018).  

As seen in the example of NHS, AI is making significant inroads into the field of medicine, 
promising enhancements in early detection, diagnosis, innovative therapies, personalised 
medicine, and disease surveillance. The rapid development and widespread application 
of AI present both opportunities and challenges, especially in domains previously 
considered exclusive to human expertise. The swift evolution of AI technologies poses a 
challenge for European legislators striving to keep legislation relevant and updated. Initial 
attempts to impose legal standards and limitations on AI applications have primarily 
involved soft law, including codes of conduct, recommendations, and declarations issued 
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by EU institutions. A central concern for legislators and stakeholders is the 
unintelligibility of AI systems. The explicability of AI, encompassing the traceability and 
explainability of AI outputs, is crucial to safeguarding individual and collective rights. The 
AI4People Scientific Committee established the explicability principle in 2018, 
emphasizing the importance of intelligibility and accountability in AI systems (Prakash et 
al., 2022).  

AI systems used in healthcare would be categorized as High-risk AI systems in terms of 
the EU AI Act. High-risk AI systems are those that could potentially impact people's safety 
or their fundamental rights. In the context of healthcare, AI applications could potentially 
fall under the category of high-risk AI systems, especially if they are used as a safety 
component of a product or are governed by EU health and safety harmonisation 
legislation. Such applications would be subject to stringent regulations to ensure safety 
and compliance with ethical standards. The AI Act aims to mitigate the risks associated 
with AI applications, ensuring that they are developed and used in ways that are safe, 
ethical, and respect fundamental human rights (Prakash et al., 2022). 

3.4.1.  Decision Support Systems in Healthcare 

Decision Support Systems (DSS) in healthcare are integral tools that assist clinicians and 
healthcare professionals in making informed and accurate decisions. These systems 
leverage a combination of technologies, data, and algorithms to provide insights and 
recommendations, enhancing the quality and efficiency of healthcare delivery. Healthcare 
DSS integrates a vast array of data sources, including Electronic Health Records (EHRs), 
laboratory results, and medical imaging data. For instance, Kawamoto et al. (2005) 
demonstrated that the integration of clinical data into DSS significantly improves clinical 
practice and patient outcomes. These systems utilize advanced algorithms and artificial 
intelligence to analyze complex datasets, offering personalized recommendations for 
patient care. Clinical Decision Support (CDS) systems, a subset of DSS, are particularly 
notable for their role in diagnosis and treatment. They analyze patient-specific data to 
provide evidence-based recommendations. A study by Osheroff et al. (2012) highlighted 
the role of CDS in reducing medical errors, improving healthcare quality, and reducing 
costs. However, the implementation of DSS in healthcare is not without challenges. 

Ethical and privacy concerns are paramount, underscoring the intricate balance between 
technological advancement and ethical considerations. The ethical implications of using 
DSS were analyzed by Ammenwerth et al (Ammenwerth and Rigby, 2016). shedding light 
on a spectrum of concerns that are as diverse as they are complex. One of the primary 
concerns, as mentioned by both the EU AI act and the UK regulation is data privacy. With 
DSS integrating vast amounts of sensitive patient data, the risk of unauthorized access and 
data breaches is a significant concern. Patients' confidential information, including 
medical histories, diagnoses, and treatment plans, must be safeguarded with the utmost 
integrity. The systems must comply with legal frameworks like the Health Insurance 
Portability and Accountability Act (HIPAA) in the U.S. or the General Data Protection 
Regulation (GDPR) in Europe, which impose stringent measures to protect patient data. 
In addition to privacy, security is another important aspect. The infrastructure supporting 
DSS must be fortified against potential cyber-attacks and unauthorized access. The 
integrity of the data and the systems is crucial not just for the privacy of the individuals 
but also for the accuracy and reliability of the decision support provided. A breach could 
not only compromise privacy but also the quality of healthcare delivery. The potential for 
bias in algorithmic recommendations is also a pressing ethical issue. Algorithms are 
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designed and trained by humans, and can inadvertently inherit biases present in the 
training data or the designers. This can lead to skewed or unfair recommendations, 
impacting certain patient groups disproportionately. It underscores the need for 
transparency, fairness, and accountability in the design and implementation of algorithms 
in DSS. The issue of informed consent also looms large. Patients must be adequately 
informed about how their data will be used and must have the autonomy to consent or 
decline. The transparency in the usage of data and the decisions made by DSS is integral 
to building trust and ensuring ethical standards (Ammenwerth et al., 2018). 

3.4.2.  AI in Diagnosis and Treatment 

Artificial intelligence continues to revolutionize the field of medical diagnosis, with 
advancements in machine learning, particularly deep learning, leading the charge. These 
technologies have proven instrumental in enhancing the accuracy, speed, and efficiency 
of diagnosing a variety of medical conditions. The integration of AI in healthcare has been 
a subject of ongoing research and development over the past few years (Jiang et al., 2017). 
AI systems, particularly machine learning (ML) and deep learning (DL) algorithms, have 
demonstrated unprecedented capabilities in diagnosing diseases, sometimes 
outperforming human clinicians (Esteva et al., 2019).  

In addition to clinical DSS, application of AI and DSS extends towards management and 
maintenance of medical equipment. As medical equipment stands at the forefront of 
medical decision making it is of utmost importance to ensure its performance and 
accuracy. The European Commission has stipulated the importance of this by introduction 
of post-market surveillance as mandatory in the new medical device regulation (MDR) 
introduced in 2017 and put in force in 2022 (Badnjević and Vuković, 2020, Badnjević and 
Pokvić, 2020, Badnjević et al., 2022, Badnjevic et al., 2023).  

Post-market surveillance of medical devices (Badnjević et al., 2015) has been proven 
useful in case studies conducted in Bosnia and Herzegovina where a large number of 
medical devices has been deemed inaccurate on the basis of performance inspection 
(Gurbeta et al., 2018a, Gurbeta and Badnjević, 2017, Gurbeta et al., 2016a, Gurbeta et al., 
2015, Gurbeta et al., 2017, Gurbeta et al., 2018b, Gurbeta et al., 2016b). As a result of 
performing post-market surveillance, a vast amount of data was collected and the team 
from Verlab has decided to utilize it and design algorithms capable of predicting medical 
device failure on the basis of their performance throughout the years (Hadžić et al., 2020, 
Hrvat et al., 2020, Spahić et al., 2020). Transcending the diagnostic challenges and 
ensuring safe and reliable measurements made by medical devices, the following 
paragraphs will briefly describe the applications of AI as DSS for aiding in diagnosis, 
treatment and prognosis of the leading causes of mortality and co-morbidity worldwide. 

In oncology, AI models have been developed to predict cancer development, progression 
and treatment planning (Nuhić et al., 2020, Spahić and Ćordić, 2020). AI algorithms 
analyze complex data sets, including genomic, proteomic, and imaging data, to identify the 
most effective treatment strategies (Hafizović et al., 2021, Mujkić et al., 2022). By 
integrating and analyzing vast and complex genomic data, AI identifies specific gene 
mutations and pathways associated with individual cancers. This genomic insight 
facilitates the development and administration of targeted therapies, enhancing 
treatment efficacy while minimizing adverse effects. Zhang et al. (2019) (Zhang et al., 
2019) illustrated how AI could predict gene mutations from imaging data, leading to 
personalized treatment strategies for lung cancer patients. AI also empowers clinicians to 
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personalize chemotherapy regimens by predicting individual patient responses to 
various drugs. Algorithms analyze clinical, genomic, and proteomic data to identify 
optimal drug combinations and dosages, minimizing toxicity and enhancing treatment 
outcomes.  

AI has been instrumental in diagnosing respiratory diseases like asthma (Stokes et al., 
2021), chronic obstructive pulmonary disease (COPD) (Badnjevic et al., 2014, Bećirović 
et al., 2021), and lung cancer. AI algorithms have demonstrated accuracy in identifying 
malignant nodules in CT scans (Ardila et al., 2019). Moreover, AI-based systems are being 
employed to analyze pulmonary function tests and predict COPD exacerbations, offering 
valuable insights for treatment planning (Golpe et al., 2022). Machine learning models are 
instrumental in predicting COPD exacerbations, enhancing preventive measures and 
treatment planning (Bećirović et al., 2021). Deep learning algorithms analyze sputum 
smear microscopy images to detect Mycobacterium tuberculosis with high accuracy 
(Lopes and Valiati, 2017). In addition to medical imaging data, clinical data was used to 
predict the severity of COVID-19 clinical presentation (Badnjević et al., 2024).  

AI has been prominently used for the early prediction of metabolic disorders such as 
lactose intolerance (Spahic et al., 2020), Addison disease (Džaferović et al., 2022) and type 
2 diabetes (Alić et al., 2017). Machine learning models leverage data such as patient 
demographics, clinical parameters, and lifestyle factors to predict the onset of diabetes 
(Alic et al., 2017). AI can also be used for prediction and management of gestational 
diabetes, a type of diabetes that affects pregnant women. Machine learning models 
analyze prenatal data, including maternal age, body mass index (BMI), family history, and 
blood glucose levels to predict the risk of developing gestational diabetes, enabling 
preventive measures (Desai et al., 2024).  

AI also plays a critical role in drug discovery, significantly reducing the time and resources 
traditionally required. Machine learning algorithms predict the pharmacological 
properties of various compounds, identifying potential new drugs. Machine learning 
models predict the biological activity of numerous compounds, facilitating the selection 
of promising candidates for further development. Chen et al. (2018) (Chen et al., 2018) 
discussed the role of AI in analyzing biological networks to identify potential drug targets 
and pathways, accelerating preclinical drug development. AI models can also predict 
potential drug targets and analyze complex biological data to develop new therapeutic 
agents, as evidenced in the rapid development of treatments and vaccines for diseases like 
COVID-19. AI is also enhancing clinical trial design, recruitment, and execution, ensuring 
the expedited development and approval of new drugs. Machine learning models analyze 
vast datasets, including electronic health records and real-world data, to identify optimal 
trial designs, predict patient responses, and monitor adverse effects in real-time.  

AI enhances mental health treatment by providing personalized interventions and real-
time monitoring. Machine learning models analyze patient data, including speech, text, 
and behavioral patterns, to identify mental health conditions and monitor treatment 
progress. AI-powered applications and chatbots provide instant, personalized 
therapeutic interventions, improving accessibility and effectiveness of mental health care 
(Iniesta et al., 2016). AI is instrumental in physical rehabilitation, offering personalized 
treatment plans and real-time monitoring of patient progress. AI algorithms analyze data 
from sensors and wearable devices to tailor rehabilitation exercises to individual patients’ 
needs, optimizing recovery outcomes. Machine learning models also predict patient 
progress and adapt treatment plans accordingly, ensuring optimal rehabilitation 
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efficiency and effectiveness (Pobiruchin et al., 2017). AI aids in personalizing pain 
management strategies, ensuring patients receive effective relief tailored to their specific 
needs. Machine learning algorithms analyze clinical, genomic, and real-time data to 
predict individual responses to various pain management interventions. AI applications 
in mobile health technologies enable real-time monitoring and management of pain, 
improving patient outcomes and quality of life (Campion et al., 2016).  

Integration of AI into everyday healthcare practice is a part of the fourth industrial 
revolution, commonly termed as Industry 4.0 (Pokvic et al., 2020). Developing computing 
capabilities and big data processing are effectively used to automate and expedite hospital 
and clinical processes thus ensuring state of the art healthcare for every patient at any 
time (Bećirović et al.).  
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3.5. State of the art in AI in cardiovascular field 
Figure 8 shows the diverse aplications of artificial intelligence in the field of 
cardiovascular medicine.  

 

Figure 8. Fields of application of AI in cardiovascular medicine 

AI has revolutionized the perception of early detection of atherosclerosis by automating 
image analysis and predicting plaque progression through clinical data integration 
(Föllmer et al., 2024, Rogers and Aikawa, 2019, Wang and Zhu, 2024). Traditional 
diagnostic methods often rely on manual interpretation of medical images, which can be 
time-consuming and prone to subjective error. In contrast, AI enables the rapid and 
accurate analysis of large volumes of patient data, allowing for more precise identification 
of atherosclerotic changes at earlier stages, when interventions can be most effective. 
Machine learning (ML) and deep learning (DL) algorithms have demonstrated remarkable 
capabilities in processing diverse and complex datasets, including electronic health 
records (EHRs), medical imaging, and genetic profiles (Maragna et al., 2021). These data 
sources collectively provide a multidimensional view of patient health, offering insights 
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that span both clinical parameters and detailed anatomical features. The integration of 
these diverse datasets through AI techniques enables a more holistic approach to 
diagnosing and predicting diseases such as atherosclerosis, where multiple factors 
converge to influence disease onset and progression (Spahić et al., 2023). 

Medical Imaging plays a pivotal role in the assessment and diagnosis of atherosclerosis, 
particularly in visualizing plaques within the arteries (Mushenkova et al., 2020). ML and 
DL models, especially convolutional neural networks (CNNs), are increasingly applied to 
process large volumes of medical images such as coronary computed tomography 
angiography (CCTA), magnetic resonance imaging (MRI), and intravascular ultrasound 
(IVUS) (Kolossváry et al., 2017, Lee et al., 2016). These imaging modalities provide high-
resolution images of the arterial walls, enabling the detection of plaques, calcifications, 
and vessel stenosis. CNNs can be trained to identify and classify different types of 
atherosclerotic plaques—such as lipid-rich, fibrous, or calcified—based on their 
appearance in these images (Athanasiou et al., 2014, Kunchur and Mostaço-Guidolin, 
2022, Kolluru, 2018, Shibutani et al., 2021). The ability of CNNs to detect subtle features 
that may be missed by human observers, such as micro-calcifications or minute changes 
in plaque composition, allows for earlier and more accurate diagnosis of high-risk 
atherosclerotic lesions . 

In addition to detecting plaques, AI-driven models can quantify the extent of arterial 
narrowing, assess the stability of plaques (distinguishing between stable and unstable 
plaques that are prone to rupture), and track changes in the size or composition of plaques 
over time (Föllmer et al., 2024). By automating the process of image analysis, AI reduces 
the variability that arises from manual interpretation by clinicians, ensuring more 
consistent and reliable diagnoses. Moreover, integrating imaging data with clinical risk 
factors from EHRs allows ML models to develop more robust predictions of disease 
progression, offering a comprehensive view of the patient’s cardiovascular health(Amal 
et al., 2022, Sanchez-Martinez et al., 2022).  

Genetic profiles add yet another layer of complexity and richness to the data that AI 
models can process. Genetic factors play a significant role in determining an individual’s 
predisposition to atherosclerosis. Genome-wide association studies (GWAS) have 
identified numerous genetic variants associated with an increased risk of atherosclerotic 
cardiovascular disease (Holdt et al., 2013). These include variants in genes related to lipid 
metabolism (such as LDLR or APOB), inflammation (e.g., IL6), and vascular homeostasis 
(e.g., NOS3) (Butnariu et al., 2022). By integrating genetic data with clinical and imaging 
information, AI models can identify genetic predispositions that, in combination with 
lifestyle factors, contribute to an individual’s overall risk of developing atherosclerosis 
(Krittanawong et al., 2022, Usova et al., 2021). One of the strengths of AI in this domain is 
its ability to handle high-dimensional data, where the number of variables (such as 
genetic markers) far exceeds the number of patients. Traditional statistical methods may 
struggle with this type of data, particularly when interactions between genetic and 
environmental factors are complex. However, ML algorithms, especially those using 
regularization techniques, can identify subtle associations between genetic variants and 
disease outcomes, offering insights into how specific genetic profiles influence the 
development and progression of atherosclerosis (Okser et al., 2014).  
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EHRs represent a critical source of clinical data for AI-based models, encompassing 
detailed patient information such as medical history, laboratory results, medications, and 
physician notes. Within the context of atherosclerosis, EHRs hold valuable insights on 
traditional cardiovascular risk factors, including cholesterol levels, blood pressure, the 
presence of hypertension, diabetes, smoking status, body mass index (BMI), and family 
history of cardiovascular disease  (Carrasco-Ribelles et al., 2023). These variables are 
essential for assessing an individual’s risk for developing atherosclerosis and its related 
complications, such as coronary artery disease or stroke. ML algorithms can efficiently sift 
through these massive datasets, uncovering correlations between patient risk factors and 
atherosclerosis development that might not be immediately apparent through traditional 
statistical methods. For instance, algorithms can detect non-linear relationships between 
risk factors or interactions that contribute to a heightened risk for plaque formation. 
Moreover, beyond risk factor stratification, EHRs also provide longitudinal data, allowing 
for tracking patient health over time. By analyzing trends in laboratory results or changes 
in medication regimens, ML models can predict future cardiovascular events or plaque 
progression with a high degree of accuracy. This longitudinal aspect of EHRs is 
particularly useful for developing personalized treatment plans, as the AI models can 
adjust risk estimates based on new clinical data, leading to more dynamic and 
individualized patient care (Carrasco-Ribelles et al., 2023). When these data sources—
EHRs, imaging, and genetics—are combined, ML and DL algorithms can offer 
unprecedented insights into atherosclerosis risk stratification. These models can not only 
predict the likelihood of plaque formation but also forecast its progression and potential 
complications, helping clinicians tailor preventative and therapeutic strategies to the 
needs of each patient  (Seckanovic et al., 2020). Moreover, these AI systems can adapt as 
more data is collected, continuously refining predictions and treatment recommendations 
in real-time, thus leading to more dynamic and personalized care. 

AI is very useful in predicting heart failure using electronic health records and real-time 
cardiac monitoring data. Machine learning algorithms can analyze vast datasets, including 
clinical, laboratory, and imaging data, to identify early signs of heart failure, enabling 
proactive management (Futoma et al., 2017; Spahic et al., 2023; Seckanovic et al., 2020). 
A study by Weng et al. (2017) employed machine learning algorithms to predict the risk 
of cardiovascular disease. The study utilized electronic health data, including age, sex, 
ethnicity, and medication, and found that machine learning models were more accurate 
in predicting cardiovascular events compared to traditional statistical models. AI models, 
especially deep learning, are employed in the real-time detection of atrial fibrillation, a 
common cardiac arrhythmia. By analyzing electrocardiogram (ECG) data, AI was proven 
to be effective in identification of patterns indicative of atrial fibrillation with high 
accuracy, aiding in timely diagnosis and treatment (Hannun et al., 2019). Machine 
learning models can also effectively analyze coronary computed tomography angiography 
(CCTA) images to detect and quantify coronary plaque, thus aiding in risk stratification 
and treatment planning in the realm of coronary artery diseases (Spahic et al., 2023; Zreik 
et al., 2018). Another application of AI in the field of cardiology are ML technologies are 
employed for the prediction, classification, and outcome prediction of stroke. They 
analyze clinical data, imaging, and genetic information to classify stroke types, predict 
occurrences, and project recovery outcomes, significantly enhancing patient care (Hrvat 
et al., 2023; Monteiro et al., 2020).  
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4. Experimental research of atherosclerotic plaque 
progression 

4.1. Agent Based Modeling  
The dataset used for development of agent based models in this PhD thesis originates 
from imaging of carotid arteries with bifurcation. The initially idealized peripheral artery 
geometry dataset was unavailable due to experimental drawbacks. In order to ensure the 
reliability of the results, a more complex geometry of an artery with bifurcation was used 
to conduct the in silico experiments. The dataset consisted of 15 patient-specific 
geometries obtained by means of reconstruction from MRI. The initial geometries were 
incorporated into input files suitable for finite element analysis using PAK software via a 
data converter designed specifically for this purpose. The initial .dat files contained 
default set parameters for simulation. 
 
The methodology for the agent based model adopted in this work, based on Corti et al. 
(2020), involves four iterative steps: 1) geometry preparation, 2) CFD simulation, 3) ABM 
simulation, and 4) new 3D geometry generation. Firstly, a 3D model of a healthy artery is 
built, followed by generation of a fluid domain mesh using PAK software. A CFD simulation 
is then performed in PAK to compute hemodynamics and extract Wall Shear Stress (WSS) 
values at the lumen interface across 2D vessel cross-sections. For each cross-section, 
hemodynamic-driven remodeling is simulated using an ABM that models cellular, 
extracellular, and lipid dynamics. The CFD simulation is responsible for calculating WSS 
values, while the ABM handles the remodeling of the arterial wall. 

 

Figure 9. ABM methodology 



 

38 
 

 
Figure 9 outlines the workflow of the proposed framework. For each 2D cross-section, 
geometry changes resulting from the ABM are transferred to the fluid domain, causing a 
recalculation of blood flow and WSS values, which are then used to update the ABM in the 
next step. This coupling ensures that the WSS distribution is continuously updated as the 
geometry of the artery evolves. By simulating cell mitosis, ECM degradation and productin 
and lipid infiltration in the intima, the ABM replicats arterial wall remodeling. Various 
vessel structures and compositions, along with new cellular events, were incorporated 
into the model. The ABM used in this study was methodologically developed by Corti et 
al. (2020) and validated under atherogenic conditions. The coupling between the CFD and 
ABM modules begins by initializing the ABM with hemodynamic input.  
 
WSS values were derived from 3D CFD simulation and eq.4 represents the calculation of 
endothelial dysfunction level 𝐷𝑖  while 𝑊𝑆𝑆𝑖 represents 𝑊𝑆𝑆 at site 𝑖 and 𝑊𝑆𝑆𝑜= 1Pa the 
𝑊𝑆𝑆 threshold. 

𝐷(𝑊𝑆𝑆)𝑖 = 𝐷𝑖 = {
1 −

𝑊𝑆𝑆𝑖

𝑊𝑆𝑆𝑜
,  𝑖𝑓 𝑊𝑆𝑆𝑖 < 𝑊𝑆𝑆𝑜

0,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 . Eq. 4  

𝑊𝑆𝑆𝑜 was determined based on the work of Samady et al.,(Samady et al., 2011). Each 
dysfunctional endothelial site 𝑖, with 𝐷𝑖 ≠ 0 , starting a state of alteration that diffuses 
within the intima through isotropic diffusion, from a peak of intensity 𝐷𝑖  with a diffusion 
constant 𝜑.   𝐴𝑖,𝑘(𝐷𝑖, 𝑑) represents the alteration level recorded at the 𝑘-th site and 

produced by the 𝑖-th endothelial site within intima, at a distance 𝑑 from 𝑖 (eq.5). 

𝐴𝑖,𝑘(𝐷𝑖, 𝑑) = 𝐴𝑖,𝑘 = 𝐷𝑖 ∗ 𝑒
−

1
2

(
𝑑

4𝜑𝑡
)

2

 . Eq. 5 

The global inflammation level of the 𝑘-th site 𝐼𝑘 is calculated as a sum of  individual 
alteration states for each site 𝑘 as shown in eq.6. 

𝐼𝑘 = ∑ 𝐴𝑖,𝑘  

𝑁𝐿

𝑖=1

. Eq. 6 

Where:  

-𝑁𝐿 is the initial number of sites of the lumen wall  

- resulting 𝐼𝑘 that affects the agent dynamics 

WSS profile was defined as atherogenic when all the 𝑊𝑆𝑆 values at the 𝑖-th sites are larger 
than the designated threshold, 𝐷𝑖 = 0 ∀𝑖 and 𝐼𝑘 = 0 everywhere or if a state of 
inflammation 𝐼 develops and the mechanisms of plaque formation are activated ( 𝑊𝑆𝑆𝑖 <
𝑊𝑆𝑆0) 

The physiological conditions were replicated by setting baseline probability densities for 
cell mitosis/apoptosis and ECM deposition/degradation rates as defined with Eq.7 and 
Eq.8, respectively: 

𝑝𝑚𝑖𝑡 = 𝑝𝑎𝑝𝑜𝑝 = 𝛼1 , Eq.7 
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𝑝𝑝𝑟𝑜𝑑 = 𝛽 ∗ 𝑝𝑑𝑒𝑔 = 𝛼4 , Eq.8 

where 𝛼1, 𝛼4 and 𝛽 are involved in maintaining the physiological cell/ECM ratio defined 
for each tissue layer during initialization. (Garbey et al., 2017).   

Coefficient 𝛽 for the intima, media and adventitia layers were set in accordance to  Garbey 
et al. (Garbey et al., 2017 ) to guarantee stable trends of ECM in each layer under baseline 
conditions. Eq.7 and Eq. 8 thereby trigger arterial wall remodelling, leading to the 
replication of healthy artery homeostasis. Inflammation level consequently increases the 
probability of cell mitosis and ECM production in the intima causing an increase in the 
number of neighboring lipids and the closeness to the lumen (Doran et al., 2008), leading 
to the following: 

𝑝𝑚𝑖𝑡 = {
𝛼1 ∙ (1 + 𝛼2𝐼𝑘) 𝑖𝑓 𝑛𝑙𝑖𝑝 = 0 

𝛼1 ∙ (1 + 𝛼2𝐼𝑘)(1 + 𝛼3𝑛𝑙𝑖𝑝){1 + exp(−𝑑𝑙𝑢𝑚𝑒𝑛
𝑘 )} 𝑖𝑓 𝑛𝑙𝑖𝑝 ≠ 0

   , 

 

Eq.9 

𝑝𝑝𝑟𝑜𝑑 = {
𝛼4 ∙ (1 + 𝛼2𝐼𝑘) 𝑖𝑓 𝑛𝑙𝑖𝑝 = 0 

𝛼4 ∙ (1 + 𝛼2𝐼𝑘)(1 + 𝛼3𝑛𝑙𝑖𝑝){1 + exp(−𝑑𝑙𝑢𝑚𝑒𝑛
𝑘 )} 𝑖𝑓 𝑛𝑙𝑖𝑝 ≠ 0

  , 

 

Eq.10 

where 𝛼2 and 𝛼3 weight the effect of the inflammation state 𝐼𝑘 and the influence of the 
neighboring lipids 𝑛𝑙𝑖𝑝, while 𝑑𝑙𝑢𝑚𝑒𝑛

𝑘  is the distance between the site 𝑘 and the lumen wall. 

The coefficients were set following the framework proposed by Corti et al.(Corti et al., 
2020a). 

Once the intima thickens over a given threshold (Bentzon et al., 2014), lipid dynamics is 
activated and lipid infiltration is calculated as the probability of a site k expressed by: 

𝑝𝑙𝑖𝑝𝑖𝑑 = 𝛼5(1 + 𝐼𝑘){1 + 𝛼6 ∙ exp(−𝑑𝑙𝑖𝑝
𝑘 )} (1 +

𝑛𝑙𝑖𝑝

𝛼7
) , Eq.11 

where 𝛼5 sets the event probability in the interval (0, 1). Lipid clustering is promoted by 
increasing the probability of a lipid to occupy a site 𝑘 close to another lipid, whose 

distance is 𝑑𝑙𝑖𝑝
𝑘  as defined in terms 𝛼6 ∙ exp (−𝑑𝑙𝑖𝑝

𝑘 ) and (1 +
𝑛𝑙𝑖𝑝

𝛼7
). Only a single lipid can 

enter the intima at an individual time step. The terms and coefficients of Eq. 11 are set so 
to mimic a lipid nucleus (Otsuka et al., 2013).  Once the lipids enter the intima layer, the 
lipid agents have to maintain their position throughout the entire simulation. 
Maintenance of the lipid core is ensured by defining that the agent movement is 
performed along the shortest path that does not include the lipid agents.  In order to 
provide structural integrity and fidelity of the simulation the agent movement complies 
with the minimum energy principle at all times except in the case when the lipid agents 
are positioned along the shortest path. Figure 10. Tissue reorganization when K produces 
an element or is removed in b) the intima, c) media and d) adventitia.Figure 10 provides 
a schematic representation of the arterial wall (Fig. 10a), an example of generation or 
disposal of an agent in the intima layer (Fig. 10b), the media layer (Fig. 10c) and the 
adventitia layer (Fig. 10d). 
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Figure 10. Tissue reorganization when K produces an element or is removed in b) the 
intima, c) media and d) adventitia. 

A distinct 3D geometry of the vessel lumen is constructed, and the initial ABM 
configuration for each plane in the subsequent cycle is determined. For each ABM solution 
at a specific cross-section (M), the lumen and external radii, along with plaque thickness, 

are calculated and represented as: 𝑅𝑗
𝑖(𝜗), with 𝑗 =  1,2,3, respectively. The corresponding 

deviation, ∆𝑖, from the average configuration, 𝑅𝑗(𝜗)̅̅ ̅̅ ̅̅ ̅ was computed as defined in Eq. 12, 

and the ABM 𝑖-th output minimizing 𝛥 was selected: 

∆𝑖= ∑ ∫ 𝑤𝑗√(𝑅𝑗
𝑖(𝜗) − 𝑅𝑗(𝜗)̅̅ ̅̅ ̅̅ ̅)

2
𝑑𝜗

2𝜋

0

3

𝑗=1

  , Eq.12 

where each 𝑗-th quantity is weighed by 𝑤𝑗 . The same criterion was applied for all cross-

sections and the 3D geometry was finally reconstructed.  

 

Coupling FE computational fluid dynamics with ABM 

Blood flow dynamics can be effectively modelled using continuum methods like the Finite 
Element Method (FEM). By numerically solving the Navier-Stokes equations, it is possible 
to obtain velocity and pressure fields, as well as the distribution of shear stresses along 
the vessel wall. Recent studies have demonstrated that hemodynamic parameters play a 
crucial role in the development of atherosclerosis, with Wall Shear Stress being one of the 
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key factors. WSS influences the transport of LDL from the bloodstream into the vessel 
wall, thereby impacting the progression of atherosclerosis. 

Atherosclerosis progresses through intricate molecular interactions within the vessel 
wall, governed by distinct rules and involving various cellular and molecular components. 
The process initiates when LDL particles penetrate the vessel wall, linking the molecular 
dynamics of atherosclerosis to the hemodynamic characteristics of blood flow. To address 
the interplay between macroscopic blood flow and microscopic disease mechanisms, a 
hybrid model integrating FEM and an ABM was established. The ABM parameters are 
drawn from references outlined in the theoretical background section, while the LDL 
entry rate into the domain varies and is derived from FEM outputs. The distribution of 
axial LDL flux along the vessel is projected onto the ABM’s horizontal axis, with LDL 
source locations evenly spaced along this axis. The entry rate at each source is scaled to 
the LDL flux at the corresponding FEM coordinate, while the vertical positioning of these 
sources is randomized. This setup provides the boundary conditions for simulating 
atherosclerosis progression using the ABM. Figures presented in a comparative manner 
in Tables 1-13 show the changes in the geometry of the artery due to remodelling driven 
by agent-based modelling coupled with blood flow. The results are presented for the 
variables wall shear stress, velocities and the ABM modulus.  
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Table 1.  ABM results for patient specific geometry 1 

Time step 1 Time step 15 

  
Wall shear stress (WSS) 

  
Velocities 

  
Agent based model (ABM) 
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Table 2. ABM results for patient specific geometry 2 

Time step 1 Time step 15 

  
Wall shear stress (WSS) 

  
Velocities 

  
Agent based model (ABM) 
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Table 3. ABM results for patient specific geometry 2 

Time step 1 Time step 15 

  
Wall shear stress (WSS) 

  
Velocities 

  
Agent based model (ABM) 
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Table 4. ABM results for patient specific geometry 4 

Time step 1 Time step 15 

  
Wall shear stress (WSS) 

  
Velocities 

  
Agent based model (ABM) 
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Table 5. ABM results for patient specific geometry 2 

Time step 1 Time step 15 

  
Wall shear stress (WSS) 

  
Velocities 

  
Agent based model (ABM) 
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Table 6. ABM results for patient specific geometry 6 

Time step 1 Time step 15 

  
Wall shear stress (WSS) 

  
Velocities 

  
Agent based model (ABM) 
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Table 7. ABM results for patient specific geometry 7 

Time step 1 Time step 15 

  
Wall shear stress (WSS) 

  
Velocities 

  
Agent based model (ABM) 
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Table 8. ABM results for patient specific geometry 8 

Time step 1 Time step 15 

  
Wall shear stress (WSS) 

  
Velocities 

  
Agent based model (ABM) 
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Table 9. ABM results for patient specific geometry 9 

Time step 1 Time step 15 

  
Wall shear stress (WSS) 

  
Velocities 

  
Agent based model (ABM) 
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Table 10. ABM results for patient specific geometry 10 

Time step 1 Time step 15 

  
Wall shear stress (WSS) 

  
Velocities 

  
Agent based model (ABM) 
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Table 11. ABM results for patient specific geometry 11 

Time step 1 Time step 15 

  
Wall shear stress (WSS) 

  
Velocities 

  
Agent based model (ABM) 
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Table 12. ABM results for patient specific geometry 12 

Time step 1 Time step 15 

  
Wall shear stress (WSS) 

  
Velocities 

  
Agent based model (ABM) 
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Table 13. ABM results for patient specific geometry 13 

Time step 1 Time step 15 

  
Wall shear stress (WSS) 

  
Velocities 

  
Agent based model (ABM) 

 
As the initial parameters were homogenous accross all simulations, the changes in plaque 
progression are only due to initial differences in plaque content and structure 
accompaniead by vessel geometry. The model was validated with patient follow-up 
results and indicated fidelity.  
 

4.2. ABM Parameter Sensitivity Analysis 
Parameter sensitivity analysis (PSA) is a quantitative method used to determine how the 
variation in input parameters of a model affects its output. It helps identify which 
parameters have the most significant impact on the model’s predictions, thus providing 
insights into the model’s robustness and reliability. This analysis is crucial in various 
fields, including engineering, economics, environmental science, and healthcare, where 
models are used to simulate complex systems and make predictions. 
The importance of PSA lies in: 

• Model validation: By understanding which parameters significantly influence 
model outputs, researchers can validate their models more effectively, ensuring 
that they are accurately representing the underlying processes. 
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• Uncertainty quantification: PSA helps quantify uncertainties in model predictions 
resulting from uncertainties in input parameters. This understanding is vital for 
making informed decisions based on model outputs. 

• Optimization: Identifying critical parameters allows for targeted optimization 
efforts, which can enhance the model’s performance while reducing computational 
costs. 

• Decision-making support: In fields like healthcare and environmental 
management, understanding parameter sensitivities can inform better decision-
making by highlighting key factors that influence outcomes. 

• Guiding experimental design: Insights gained from sensitivity analysis can help 
guide experimental design, focusing resources on the most influential parameters. 

There are various methods for performing parameter sensitivity analysis, each suited for 
different types of models and applications. Different types of sensitivity analysis are:  

• Local sensitivity analysis 
• Global sensitivity analysis 
• Screening methods 
• Regression-based sensitivity analysis 

Local sensitivity analysis which examines how small changes in input parameters affect 
the output around a nominal point (usually the mean or expected value). It uses the first 
derivative (gradient) of the output with respect to the input parameters. It typically 
involves perturbing each parameter slightly while keeping others constant and observing 
the change in output. 
Global sensitivity analysis assesses the influence of input parameters over their entire 
range of possible values. It considers the joint variability of all parameters and their 
interactions. Methods of global sensitivity analysis include: 

• Variance-based methods, such as Sobol’ indices, which decompose the variance of 
the output into contributions from individual parameters and their interactions. 

• Fourier Amplitude Sensitivity Test (FAST) that transforms the parameter space 
into a Fourier series to quantify sensitivities. 

• Monte Carlo Simulations randomly sample input parameters from their 
probability distributions to observe the resulting output variability. 

Screening methods are used as PSA when the number of parameters is large, and the goal 
is to identify the most influential parameters quickly. These methods can filter out 
insignificant parameters before conducting a more detailed analysis. Methods of 
screening can be: 

• One-at-a-Time (OAT) Testing that systematically varies one parameter at a time 
while holding others constant. 

• FAST and Morris methods that efficient techniques to identify sensitive 
parameters in a reduced number of model runs. 

Regression-based sensitivity analysis involves fitting a regression model to the output 
data, with input parameters as predictors. The coefficients of the regression model 
indicate the sensitivity of the output to changes in each parameter. 
A comparison of advantages and limitations of different sensitivity analysis methods is 
given in Table 14.  

Table 14. Comparison of different sensitivity analysis methods 

 Advantage Limitation 
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Local sensitivity analysis Simple and 
computationally efficient 
for linear models 
 

It assumes linearity and 
may not capture nonlinear 
effects or interactions 
between parameters. 

Global sensitivity analysis Provides a comprehensive 
view of parameter effects 
and captures nonlinearities 
and interactions. 

More computationally 
intensive and requires a 
larger number of model 
evaluations. 

Screening methods Efficient and can 
significantly reduce 
computational effort. 

May miss interactions 
between parameters. 

Regression-based 
sensitivity analysis 

Useful for linear models 
and provides a 
straightforward 
interpretation of 
sensitivities. 

Limited to linear 
relationships and may not 
capture complexities in 
more intricate models. 

 
Latin Hypercube Sampling (LHS) is a powerful statistical technique widely used in PSA 
and Monte Carlo simulations. It serves as a robust method for efficiently exploring the 
input parameter space of a model, generating a set of samples that accurately represent 
potential outcomes. Understanding LHS involves diving into its unique approach, 
advantages, and applications in sensitivity analysis. At its core, LHS is a stratified sampling 
method that ensures each parameter is uniformly sampled across its entire range. Unlike 
traditional random sampling, where each parameter is treated independently, LHS 
divides the range of each parameter into equally probable intervals, also known as strata.  
The design of LHS is systematic and intuitive. To start, each input parameter is broken 
down into N equal intervals, with N representing the total number of desired samples. For 
every parameter, one value is randomly selected from each of these intervals, and these 
selected values are then combined to create a complete set of input parameters for the 
model. This approach guarantees that all combinations of parameter values are covered, 
resulting in a more efficient exploration of the parameter space. 
The advantages of using LHS in PSA are firstly that it enhances efficiency by providing a 
more accurate representation of the input space with fewer samples compared to simple 
random sampling. This characteristic is particularly valuable when working with complex 
models that demand significant computational resources for evaluation. By ensuring that 
each parameter’s range is uniformly sampled, LHS avoids clustering in specific regions, 
allowing for better coverage of the overall parameter space. Moreover, LHS contributes 
to reducing the variance of output estimates, as it effectively captures the entire range of 
each parameter. Implementing LHS is also straightforward, making it accessible for 
researchers across various fields. 
LHS finds its applications in numerous areas of sensitivity analysis. In exploratory studies, 
for example, it plays a crucial role in identifying which parameters exert the most 
significant influence on model outputs. In fields such as environmental modeling, finance, 
and engineering, LHS helps quantify uncertainties by sampling input parameters and 
assessing their impact on variability in the results. It also supports model calibration and 
validation by efficiently exploring the parameter space to identify optimal values and 
validate predictions. 
Implementing LHS in parameter sensitivity analysis follows a clear sequence of steps. 
Initially, the parameters to be analyzed are determined and their corresponding ranges 
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or probability distributions determined. Next,  the number of samples to be generated for 
the analysis is determined. Each parameter’s range is then stratified into equal intervals 
based on the sample size. Once this is done, one value is randomly selected from each 
interval for each parameter, ensuring all intervals are represented. The samples are 
combined to create a comprehensive set of input parameter combinations, which are 
subsequently used to run the model. Finally, the output data is analyzed to identify 
influential parameters and their effects. The methodology of LHS-based sensitivity 
analysis conducted in this research is show in Figure 11. 
 

 

Figure 11. Workflow of LHS PSA 

 
The intrinsic ABM parameters driving the simulation were initially defined by Garbey et 

al.,(Garbey et al., 2017) and the constant parameters that drive cellular events are:  

- Probability of mitosis and apoptosis 
- Smooth muscle cell (SMC) division in the intimal layer 
- Extracellular matrix (ECM) deposition in intimal layer 
- ECM deposition in medial layer 
- SMC division in medial layer 
- Outward remodeling driven by shear forces 
- Outward remodeling driven by tensile forces 

All of the aforementioned parameters have been defined in literature and their respective 

physiological ranges determined (Table 15). 

Table 15. ABM parameters and ranges 

Parameter 
name 

Parameter description Parameter 
type 

Range Default 
value 

α1 Probability of mitosis and 
apoptosis 

constant 0.05 0.05 
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α2 Probability of SMC 
proliferation in tunica 
media 

variable 2-17 1.5 

α3 Probability of SMC 
proliferation in intima  

variable 0-0.5 0.1 

α4 Probability of ECM 
degradation 

constant 0.008 0.008 

α5 Probability of lipid 
infiltration  

variable 0-0.106 0.005 

α6 Outward remodeling 
driven by shear forces 

Variable 0-24.46 10.0 

α7 Outward remodeling 
driven by tensile forces 

Variable 1.84-100 6.0 

 

Parameter sensitivity analysis results 

Multi-parametric sensitivity analysis was conducted using LHS to randomly sample the 
triangular probability density function of each parameter and define the parameter set 
for the ABM simulations. This method allowed for the exploratory testing of the entire 
range of each parameter and is proven to achieve good accuracy with a limited number of 
simulations. The probability density functions of all parameters were divided into 100 
equal probability intervals and an LHS matrix was generated identifying 100 ABM 
parameter combinations. To account for the influence of these parameters on different 
initial patient-specific geometries, 100 simulations with different patient-specific 
geometries were conducted for 13 distinct cases.  

The results of PSA were first analyzed graphically in the domain of ABM simulation 
results. Results of example simulations are presented in Figures 12-18 and parameter 
comparisons are given in tables 16-22.  
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Instance 1 
 

Figure 12.a ABM results with default parameters  

Figure 12.b ABM results with LHS generated parameters (Table 16.)  

Figure 12. Graphical result difference for LHS on sample geometry 3 

As it can be seen from Figure 12, even a slight increase in α5 causes significant progression 
of atherosclerosis. The progression of atherosclerosis in this case seems irregular as the 
process is directed towards the arterial lumen, indicating that the ABM could be 
oversensitive to changes made to α5. 

 

 

 

Table 16. Parameter comparison LHS (geometry 2) 
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Parameter Default simulation parameters LHS generated 
simulation 
parameters 

Parameter status 

α1 0.05 0.05 Const 
α2 1.5 1.5 Const 
α3 0.1 0.1 Const 
α4 0.008 0.008 Const. 
α5 0.005 0.009 > 
α6 10.0 10.0 Const 
α7 6.0 6.0 Const 
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Instance 2 

Figure 13.a ABM results with default parameters  

Figure 13.b ABM results with LHS generated parameters (Table 17)  

Figure 13. Graphical result difference for LHS on sample geometry 3 

In this instance, the LHS parameters intorduced an increase in α2, α3, α5 and α7 along with 
a decrease in α6. Even though the parameter driving the arterial wall remodelling was 
decreased the contribution of the increase in other parameters resulted in a significantly 
increased plaque progression. Additionally, the plaque progression in this case is 
irregular as it is modeled as a migration of the atherosclerotic plaque towards the arterial 
lumen. Even though this can be interpreted as the breakage of the plaque and thrombus 
formation, a significant increase in the parameter driving outward remodelling by tensile 
forces could be a potential disruptor of the simulation. 

Table 17. Parameter comparison LHS (geometry 3) 
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Parameter Default simulation parameters LHS generated 
simulation 
parameters 

Parameter status 

α1 0.05 0.05 Const 
α2 1.5 15.3 > 
α3 0.1 0.35 > 
α4 0.008 0.008 Const. 
α5 0.005 0.062 > 
α6 10.0 3.9 < 
α7 6.0 77.0 > 
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Instance 3 

Figure 14.a ABM results with default parameters  

Figure 14.b ABM results with LHS generated parameters (Table 18.)  
 

Figure 14. Graphical result difference for LHS on sample geometry 4 

Taking into account the fact that all variable simulation parameters were significantly 
increased, an the only change to the atherosclerotic plaque progression was in the field of 
transitioning from fibrous to calcified plaque, it can be said that the ABM deals well with 
pertrubations in simulation parameters. Contrary to the results from patient-specific 
geometries 2 and 3 where even slight changes in the parameters caused a significan 
pertrubation in the simulation, the fidelity of results was kept constant in this case. This 
leads to a deduction that the simulation results are much more sensitive to the geometry 
itself than to the parameter pertrubations. If the regularity of the arterial wall and lumen 
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is compared betwee these three instances, it is clearly visible that geometries 2 and 3 are 
much more irregular in terms of kinks and narrowings of the vessel than geometry 4. 

Table 18. Parameter comparison LHS (geometry 4) 

Parameter Default simulation parameters LHS generated 
simulation 
parameters 

Parameter status 

α1 0.05 0.05 Const 
α2 1.5 4.002 > 
α3 0.1 0.243 > 
α4 0.008 0.008 Const. 
α5 0.005 0.017 > 
α6 10.0 21.296 > 
α7 6.0 76.77 > 
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Instance 4 

Figure 15. Graphical result difference for LHS on sample geometry 5.a ABM results 
with default parameters  

Figure 15.b ABM results with LHS generated parameters (Table 20.)  
 

Figure 15. Graphical result difference for LHS on sample geometry 5 

In the context of geometry 5, a significant increase in plaque burden is observed with  both 
transition of the initial fibrous plaque to calcified and progression along the vessel wall. 
This was caused by an increase in all parameters driving atherosclerotic progression 
except for α3. The fidelity of the simulation results was once again preserved regardless 
of significant changes made to the simulation parameters.  

  

Table 19. Parameter comparison LHS (geometry 5) 
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Parameter Default simulation 
parameters 

LHS generated simulation 
parameters 

Parameter status 

α1 0.05 0.05 Const 
α2 1.5 6.1 > 
α3 0.1 0.05 < 
α4 0.008 0.008 Const. 
α5 0.005 0.075 > 
α6 10.0 12.0 > 
α7 6.0 74.0 > 
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Instance 5 

Figure 16.a ABM results with default parameters  

Figure 16.b ABM results with LHS generated parameters (Table 20.)  

Figure 16. Graphical result difference for LHS on sample geometry 5 

The simulation fidelity was significantly distorted in the case of sample geometry 5 where 
the simulation results suggest „leakage“ of the plaque content into the bloodstream, an 
occasion that does not happen in physiological scenarios. Taking into account the changes 
made to the parameters and the fact that α7 was increased more than 10-fold it can be 
concluded that the simulation results are highly sensitive to the changes made to the 
parameter affecting outward remodeling by tensile forces. Even though the change made 
to α7 was within the defined parameter range it still disrupted the simulation. Considering 
the fact that changes to the same parameter in a similar extent do not disrupt the 
simulation, geometry was reobserved. What can be quickly noted is that the upper branch 
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of the artery is significantly shorter. It is known from literature that arteries with 
bifurcation are prone to plaque development and quick progression in this region. Taking 
into account the „leakage“ happened at the bifurcation point, the abrupt results of the 
simulation could be due to the combination of geometric peculiarities combined with 
significant parameter pertrubations.  

Table 20. Parameter comparison LHS (geometry 5) 

Parameter Default simulation 
parameters 

LHS generated 
simulation 
parameters 

Parameter 
status 

α1 0.05 0.05 Const 
α2 1.5 4.9 > 
α3 0.1 0.4 > 
α4 0.008 0.008 Const. 
α5 0.005 0.094 > 
α6 10.0 9.3 < 
α7 6.0 99.1 > 
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Instance 6 

 
Figure 17.a ABM results with default parameters  

Figure 17.b ABM results with LHS generated parameters (Table 21.)  

Figure 17. Graphical result difference for LHS on sample geometry 6 

In the case of sample geometry 6 there is again a significant pertrubation in the simulation 
results. Even though the parameter driving the arterial wall remodelling was decreased 
the contribution of the increase in other parameters resulted in a significantly increased 
plaque progression. Additionally, the plaque progression in this case is irregular as it is 
modeled as a migration of the atherosclerotic plaque towards the arterial lumen. Even 
though this can be interpreted as the breakage of the plaque and thrombus formation, a 
significant increase in the parameter driving outward remodelling by tensile forces could 
be a potential disruptor of the simulation. 

Table 21. Parameter comparison LHS (geometry 6) 
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Parameter Default simulation 
parameters 

LHS generated simulation 
parameters 

Parameter status 

α1 0.05 0.05 Const 
α2 1.5 2.1 > 
α3 0.1 0.4 > 
α4 0.008 0.008 Const. 
α5 0.005 0.026 > 
α6 10.0 6.5 < 
α7 6.0 36.0 > 
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Instance 7 

 
Figure 18.a ABM results with default parameters  

 

Figure 18.b ABM results with LHS generated parameters (Table 22.)  

Figure 18. Graphical result difference for LHS on sample geometry 10 

Sample geometry 10 has several peculiarities. Atherosclerotic plaque commonly develops 
only on a single place along the artery, in close proximity to the bifurcation region. 
However, in this example, there are paired instances of atherosclerotic plaque in the 
upper branch of the artery and in the common branch. When it comes to the results of the 
simulation, once again the ABM exhibits fidelity in results as plaque progression occurs 
transversally and longitudinally without infiltration into the arterial lumen.  

Table 22. Parameter comparison LHS (geometry 10) 
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Parameter Default simulation 
parameters 

LHS generated simulation 
parameters 

Parameter status 

α1 0.05 0.05 Const 
α2 1.5 7.4 > 
α3 0.1 0.2 > 
α4 0.008 0.008 Const. 
α5 0.005 0.098 > 
α6 10.0 5.7 < 
α7 6.0 30.0 > 

 

Partial rank correlation coefficient analysis 

As the graphical analysis of the results showed several peculiarities, it was necessary to  
conduct a comprehensive analysis of the results obtained from LHS and to derive 
conclusions about the parameters most influential on simulation results.  
The Partial Rank Correlation Coefficient (PRCC) is a statistical technique commonly used 
in sensitivity analysis to assess how changes in input parameters influence a model’s 
output, while accounting for the effects of other variables. It is particularly advantageous 
when dealing with complex systems where input parameters may be interdependent, and 
the relationships between them and the output are not strictly linear. In many real-world 
models, variables interact in nonlinear and often non-intuitive ways, making it difficult to 
identify which inputs have the most significant effect on the results. PRCC addresses this 
challenge by providing a rank-based correlation measure that can capture monotonic 
relationships, which are relationships where variables move consistently in one direction, 
but not necessarily in a linear fashion. PRCC is applied in the sensitivity analysis of 
systems such as structural models, where various design parameters (material 
properties, load conditions, geometric configurations) need to be optimized. By 
identifying which parameters have the most significant impact on the system’s behavior, 
engineers can make informed decisions about resource allocation or design 
modifications. 
At its core, PRCC is built on Spearman’s rank correlation coefficient, which measures the 
strength and direction of the monotonic relationship between two ranked variables. This 
makes PRCC well-suited for models where traditional linear correlation methods may fall 
short because the relationships between inputs and outputs are more complex. While 
Spearman’s correlation is useful for bivariate analysis, PRCC extends this to a multivariate 
context by adjusting for the presence of multiple variables. This adjustment isolates the 
unique contribution of each input parameter on the output, even when other inputs are 
correlated with both the parameter and the outcome. This “partial” aspect of PRCC is what 
makes it so powerful. In traditional sensitivity analysis, correlations might be computed 
directly between each input and the output, but these raw correlations could be 
misleading due to the confounding effects of other variables. PRCC, on the other hand, 
controls for these confounding effects, ensuring that the influence of one parameter is 
evaluated while holding the others constant. 
To compute PRCC, the process involves the following key steps: 

• Ranking the data: First, all data (inputs and output) are converted into ranks, 
which allows PRCC to focus on the relative ordering of data rather than their 
absolute values. This is particularly useful in scenarios where the inputs and 
outputs are measured on different scales or where the exact values are not as 
important as their ordering. 
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• Regression to adjust for other variables: For each input parameter, a regression 
analysis is performed with respect to all other input variables. This allows the 
technique to remove the shared variability between the parameter being analyzed 
and the other inputs. Essentially, it computes residuals that represent the portion 
of the parameter that cannot be explained by the other inputs. 

• Rank correlation of residuals: Next, a rank correlation (Spearman’s) is computed 
between the residuals of the input parameter and the residuals of the output 
variable, ensuring that the relationship being evaluated is independent of the 
effects of other inputs. 

• Interpret the PRCC value: The PRCC value ranges from -1 to 1. A PRCC close to 1 
indicates that the input has a strong, positive monotonic relationship with the 
output, meaning that as the input increases, so does the output, even after 
controlling for the other inputs. A PRCC near -1 indicates a strong, negative 
monotonic relationship, where increases in the input are associated with 
decreases in the output. A PRCC around 0 suggests no significant relationship 
between the input and output when other factors are accounted for. 

 
PRCC offers several advantages, making it a valuable tool for analyzing complex systems: 

• Handling nonlinearity: Traditional sensitivity analysis methods like Pearson 
correlation assume linear relationships between inputs and outputs. PRCC relaxes 
this assumption by focusing on monotonic relationships, making it more flexible 
and suitable for systems with nonlinear dynamics. 

• Controlling for confounding variables: One of PRCC’s primary strengths is its 
ability to control for the effects of other input parameters. In many models, 
parameters are interrelated, and simply looking at their raw correlation with the 
output might lead to incorrect conclusions. PRCC removes the effects of these 
confounding variables, allowing for a clearer understanding of each input’s unique 
contribution to the output. 

• Robustness to outliers and non-normal distributions: Because PRCC is based on 
rank correlation, it is less sensitive to outliers or the distribution of the data. This 
makes it particularly useful in real-world applications where input data might not 
follow a normal distribution, or where occasional extreme values could skew the 
results of traditional correlation methods. 

• Applicable in high-dimensional systems: PRCC is well-suited for analyzing models 
with many input parameters, as it systematically adjusts for the effects of multiple 
variables. This makes it useful in fields like environmental science, epidemiology, 
and engineering, where models often have dozens of inputs and complex, 
interdependent relationships between variables. 

• Interpretable results: The results of a PRCC analysis are straightforward to 
interpret. Each input is assigned a PRCC value that indicates its relative importance 
in driving the output, which allows researchers to easily identify the most 
influential parameters. This information can be crucial for model validation, 
refinement, and policy decisions in applied fields. 

 
Figures 19-22 show the PRCCs between the variable model inputs (α2, α3, α5, α6 and α7) 
and target model outputs such as arterial wall, arterial and  final content of fibrous plaque 
type and calcified plaque type respectively.  
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Figure 19. PRCC for arterial lumen  

As it can be seen from Figure 19. α2, α3, α5 and α6 exhibit relatively low but statistically 
significant PRCC. This implies that the input parameters have a meaningful influence on 
the output, even if the relationship is not extremely strong. This indicates increasing 
coefficients of SMC proliferation, lipid infiltration and outward remodeling driven by 
shear forces leads to a slight but consistent reduction in a physiological outcome, which 
was expected as all of these parameters should stimulate increased plaque growth thus 
constricting the arterial lumen. 

 

Figure 20. PRCC for arterial wall 
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There are no statistically significant PRCC scores for the influence of variable simulation 
parameters on remodeling of the arterial wall. The arterial wall's response might be 
driven by a combination of factors working together, rather than any single parameter 
exerting a dominant influence.  

 

 

Figure 21. PRCC for fibrous plaque 

 

The only parameter shown to be statistically significant influence on fibrous plaque 
decrease is the probability of lipid infiltration. From a biological point of view, lipid 
infiltration leads to plaque progression towards transition to calcified plaque.  
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Figure 22. PRCC for calcified plaque 

Variable parameters α2, α4, α5, α6 show a statistically significant positive PRCC while α7 
shows a relatively low but statistically significant PRCC. A positive PRCC for α2  suggests 
that increased smooth muscle cell activity contributes to plaque growth, while α4 
indicates that weakening of the extracellular matrix exacerbates arterial occlusion. 
Similarly, α5 plays a crucial role in plaque formation by increasing lipid accumulation 
within the artery and α6 positively affects the lumen, suggesting that hemodynamic forces 
help maintain or expand the arterial diameter, while α7 shows a weaker, but still 
significant, influence on outward remodeling. These findings underscore the complex 
interplay between cellular proliferation, lipid dynamics, and mechanical forces in the 
progression of atherosclerosis. 

 

4.3. Surrogate model 
Computational modeling framework of coupled ABM and FEM is powerful but it comes at 
a price of time intensity, lack of flexibility and specific-knowledge required to conduct it. 
As the aim of biomedical engineering is to simplify processess in healthcare making it 
more efficient and cost effective, thus enhancing the quality of treatment, an AI-based 
system for prediction of the extent of plaque progression was developed.  
A vast amout of data was generated through LHS and that data was used for the 
development of the AI algorithm. The workflow is presented in Figure 23. 
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Figure 23. Workflow surrogate model development 

 
The development of a surrogate model for estimating the class of plaque progression 
based on ABM parameters and initial plaque content involves several critical steps, 
starting from data preparation to model evaluation. This process aims to replace detailed 
simulations with a simplified, yet accurate, predictive model, significantly reducing 
computational time and complexity while maintaining acceptable levels of prediction 
accuracy. 

4.3.1. Dataset curration 

The success of a surrogate model relies heavily on the quality and comprehensiveness of 
the dataset used to train and validate the model. In this work, the dataset was constructed 
from detailed simulations of plaque development within the arterial wall, using an ABM 
framework. This approach allowed for the precise modeling of complex biological 
interactions that occur during plaque formation, providing a rich source of data for 
building an accurate and efficient surrogate model. The data comprises two fundamental 
components: initial plaque content and ABM parameters. 
The initial plaque content refers to the baseline state of the arterial plaque before any 
progression or treatment interventions. This data is critical because it establishes the 
starting point from which plaque growth and progression are simulated. In biological 
terms, the composition and state of the plaque at this initial stage determine how it 
evolves over time, driven by cellular and molecular interactions. The initial plaque 
content serves as the input for ABM simulations, dictating how the plaque behaves under 
various conditions. The heterogeneity in this starting content provides a wide range of 
possible plaque development outcomes, which the surrogate model aims to predict. 
 
In addition to the initial plaque content, the dataset includes a series of ABM parameters 
defined in .. These parameters define the rules and mechanisms governing the behavior 
of various agents (e.g., cells, molecules) within the ABM. They represent the dynamic 
processes that drive plaque progression over time. 
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The key ABM parameters used in this study are: 

• Cellular proliferation rates: These rates govern how quickly smooth muscle cells 
and macrophages divide and accumulate within the plaque. For instance, smooth 
muscle cells can proliferate in response to inflammatory signals, contributing to 
the thickening of the plaque’s fibrous cap. The rate of macrophage proliferation 
also impacts inflammation and plaque vulnerability. 

• ECM degradation rate: The balance between ECM production and degradation 
affects plaque stability. Excess ECM degradation, often driven by enzymes secreted 
by macrophages, can weaken the plaque’s structure and increase the risk of 
rupture. Conversely, excessive ECM production can lead to excessive thickening of 
the plaque, potentially narrowing the arterial lumen. 

• Lipid infiltration and transport dynamics: The rate at which lipids infiltrate the 
arterial wall and their subsequent transport across different layers of the artery 
are key drivers of plaque progression. The ABM simulates how lipids accumulate 
in the plaque and trigger further inflammatory responses, driving the formation of 
foam cells. 

• Parameters driving the arterial wall remodelling on the meso-scale in response to 
the micro-scale ABM 

Each of these parameters influences the evolution of the plaque in a unique way, 
contributing to the overall complexity of the disease process. For example, higher cellular 
proliferation rates may lead to a more aggressive form of plaque growth, while increased 
ECM degradation could result in a more vulnerable plaque prone to rupture. 
 
Given the inherent complexity of the biological processes involved in plaque 
development, it is critical to ensure that the dataset covers a wide range of possible 
scenarios. In this study, LHS was used to vary the initial plaque content and ABM 
parameters across a wide range of plausible values. This approach ensures that all areas 
of the parameter space are sampled adequately, which is particularly important when 
modeling complex, non-linear systems like plaque progression. By using LHS, the study 
was able to generate a diverse set of simulation runs, each representing different 
combinations of: 
- Probability of mitosis and apoptosis 
- Smooth muscle cell (SMC) division in the intimal layer 
- Extracellular matrix (ECM) deposition in intimal layer 
- ECM deposition in medial layer 
- SMC division in medial layer 
- Outward remodeling driven by shear forces 
- Outward remodeling driven by tensile forces 
Each simulation run represents a unique instance of plaque development under specific 
conditions, providing the dataset necessary for training the surrogate model.  
The LHS approach was used to generate 1500 simulations, each representing different 
combinations of initial conditions and ABM parameters. These simulations were run 
through the agent-based model, which tracks the progression of the plaque over time. The 
simulation outputs include the final plaque state and the progression class (i.e., no 
progression, moderate progression, or severe progression), which serves as the target 
variable for the surrogate model. 
The resulting dataset includes a comprehensive range of conditions, making it suitable for 
training a surrogate model capable of predicting plaque progression based on the initial 
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plaque content and ABM parameters alone. This dataset forms the basis for all subsequent 
steps in the surrogate model development process, including feature engineering, model 
training, and evaluation. 
 

4.3.2. Data retrieval 

Once the simulations were completed, the focus shifted to retrieving the critical data for 
analysis, specifically from large `.vtk` files that contained information about the 
progression of atherosclerotic plaque within arteries. .vtk files store information about 
points (vertices), connectivity (how those points form shapes like triangles or polygons), 
and attributes (e.g., color, scalar values, or vector fields) for visualization and analysis of 
the agent based simulation. These simulations had been executed across multiple cases, 
each stored in a dedicated folder. Each folder represented a different simulation scenario 
with unique input parameters that influenced the progression of plaque. The data 
extraction process was essential for analyzing how various factors affected plaque 
buildup and arterial occlusion over time. 

Initially, the challenge was to parse through the `.vtk` files. These files, often used for 
scientific data visualization, contained massive amounts of data across hundreds of 
thousands of lines. The relevant data regarding plaque progression was stored between 
specific lines and columns. It was essential to focus on just this subset to reduce 
unnecessary processing overhead. In this particular case, the lines of interest ranged from 
487883 to 532702. Additionally, the desired data was located within certain columns of 
these lines (columns 5 to 7), meaning that the script had to be precise in targeting the 
correct sections of the file.  

Given the size of the files, manually opening and reviewing them was impractical. 
Therefore, an automated approach was necessary. A Python script was developed to 
systematically go through each folder, open the ̀ .vtk` files, read through the relevant lines, 
and extract the specific column data. The files `PAKF0001.vtk` and `PAKF0015.vtk` were 
of particular interest since they contained critical data snapshots at different time points 
in the simulations. These two files represented the progression of the plaque at different 
stages, and the goal was to compare the data between these stages to understand how the 
plaque evolved under different conditions. 

The script was designed to iterate over all the folders named according to a specific 
pattern, such as "abm0", "abm1", and so on. It ensured that only folders containing 
simulation data were processed, thus avoiding any irrelevant files. For each folder, the 
script accessed the `.vtk` files and read through the required line ranges, collecting the 
data from the necessary columns. This data was then stored in a Pandas DataFrame, a 
flexible and powerful data structure used for handling tabular data in Python. 

Once the data from the two ̀ .vtk` files was extracted and stored in the DataFrame, the next 
step was to save this data into an Excel file. The script created a new Excel file for each 
simulation folder, with the data from both `PAKF0001` and `PAKF0015` represented as 
separate columns in the spreadsheet.  ̀ PAKF0001` and ̀ PAKF0015` contain the simulation 
results for 2 distinct datapoints in a simulation cycle. This allowed the results of each 
simulation to be easily accessed and analyzed in Microsoft Excel or any other software 
that could handle `.xlsx` files.  
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The initial process involved saving each Excel file in a corresponding subfolder within the 
output directory. However, as the requirements evolved, it became clear that a more 
efficient approach was needed to centralize all the Excel files into a single directory, 
making them easier to access and manage. The code was adjusted accordingly to bypass 
subfolder structures and place all Excel files directly into one folder. 

After the initial data extraction and storage, the focus shifted toward analyzing the 
transitions between the stages of plaque progression represented by the data in 
`PAKF0001` and `PAKF0015`. This required calculating the changes in plaque categories 
between the two stages, essentially identifying how frequently the arterial tissue behaved 
and how transitions from 1 (vessel lumen) and 2 (vessel wall)  to 3 (fibrous plaque) and 
4 (calcified plaque) occured and to which extent. The transitions were critical for 
understanding the dynamics of plaque development and how different simulation 
parameters affected these dynamics.  

To handle this, the data was compared between the two columns of the Excel files 
corresponding to `PAKF0001` and `PAKF0015`. The transitions were categorized into 
different scenarios, such as plaque moving from category 1 to category 2, or from category 
2 to category 4. A variety of transition types were considered to capture all possible 
changes, including combinations such as moving from category 1 to either category 3 or 
4. The goal was to generate a detailed profile of how the plaque progressed in each 
simulation. 

For each transition type, the total number of occurrences was calculated, and then these 
occurrences were converted into percentages to give a clearer picture of the distribution 
of transitions. These percentages reflected the proportion of transitions relative to the 
total number of data points, allowing for easy comparison between different simulations. 
Finally, the percentage transitions were arbitrarily classified into three classes to capture 
the heterogeneity of the plaque progression cases : 

• 0 - „insignificant plaque progression“( <0.05%) 
• 1 – „significant plaque progression“ (0.05%-0.15%) 
• 2 – „severe plaque progression“ (>0.15%) 

After the transition analysis for all simulations was completed, the results were compiled 
into a single Excel workbook. Each sheet in the workbook corresponded to one simulation 
case and contained the detailed transition analysis for that case. The final output provided 
a comprehensive overview of how plaque progressed across all the simulations, with easy 
access to both the raw extracted data and the calculated transition percentages. 

4.3.3. Data analysis 

Once the data from the simulations had been successfully retrieved and organized into 
Excel files, the next step was conducting a detailed statistical analysis. This analysis aimed 
to uncover patterns, correlations, and key insights from the large dataset of plaque 
progression parameters across various simulations. The process began with basic 
descriptive statistics to provide an overview of the data and then moved into more 
advanced techniques such as Principal Component Analysis (PCA) for dimensionality 
reduction. 

The first step in the statistical analysis involved calculating descriptive statistics for each 
feature extracted from the simulation data. These statistics included measures such as the 
mean, median, standard deviation, and interquartile range for each variable. Given that 
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the simulations involved multiple parameters—each influencing the progression of 
atherosclerotic plaque—it was critical to understand the distribution of these parameters 
individually before delving into more complex relationships (Figure 24). 

 

Figure 24. Descriptive statistics of the dataset showing min, max, mean, STD, 25%, 50% 
and 75% characteristics of the data 

The descriptive statistics provided a foundational understanding of how each parameter 
behaved across different simulations. As the aim of conducting a substantial number of 
simulations to cover as much as possible variability and different simulation cases it was 
necessary to observe the statistical behavior of individual parameters. Obserbving the 
standard deviations revealed the approximate discrepancies amongst different 
simulation scenarios, important to grasp weather the dataset covers enough variability 
while analysis of min and max for each parameter enabled understanding weather 
extremes are covered for parameters. For example, examining the range and variability 
in plaque thickness or changes in material composition helped to identify any outliers or 
extreme values that might affect the overall analysis and contribute to extreme cases to 
cover peculiar pathologies. Skewness and kurtosis were also calculated to assess the 
symmetry and peakedness of the data distributions, giving further insights into the nature 
of the dataset. 
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In this stage, histograms were used to visualize the spread of each variable. These 
visualizations helped to identify any non-normal distributions or skewed data, both of 
which would need to be addressed before proceeding to more advanced analyses. For 
instance, if a parameter exhibited a highly skewed distribution, transformations such as 
log or square-root transformations were considered to normalize the data, ensuring it 
was suitable for subsequent steps. 

 

Figure 25. Distribution of parameter α2. 

Parameter 2 exhibits a highly skewed distribution to the left. When a distribution is 
characterized by a left skew, or negative skewness, it indicates that the majority of the 
data points are concentrated on the right side of the distribution, with the tail extending 
to the left. This scenario often suggests that while most of the values are relatively high, 
there are a few significantly lower values that are pulling the average down. The 
distribution of the parameter which represents the probability of smooth muscle cell 
(SMC) proliferation in the tunica media, exhibits a prominent peak on the left side of the 
distribution curve. This indicates that the majority of the sampled data points cluster 
around relatively low probabilities of SMC proliferation, suggesting that under most 
physiological conditions, SMC proliferation is limited. This leftward concentration is 
typical of a distribution where most observations reflect normal physiological states, 
where SMC activity is kept in check to maintain vascular homeostasis. However, the 
pronounced peak indicates that, while the baseline probability of SMC proliferation is low 
for most conditions, it is crucial to recognize the context in which these low values exist. 
The peak signifies that under typical scenarios—where there are no significant 
pathological stimuli—the probability of SMC proliferation remains minimal. Such 
conditions might involve a stable vascular environment with balanced biochemical 
signals, low levels of inflammation, and normal mechanical stresses. 
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Figure 26. Distribution of parameter α3 

The long right tail of the skewed 3,or positive skewness, indicates that most of the data 
points are concentrated on the left side of the distribution, while a few high values extend 
the tail to the right. This type of distribution is often seen in situations where the majority 
of observations are relatively low, but there are a small number of exceptionally high 
values that significantly influence the mean. It suggests that while most of the sampled 
conditions represent lower probabilities of SMC proliferation—indicating a typical 
response under most physiological conditions—there are specific cases where the 
probability spikes to much higher levels. These high-probability cases are likely tied to 
scenarios where multiple influential factors align favorably, such as elevated 
concentrations of growth factors, the presence of certain inflammatory signals, or 
particular biomechanical stresses within the vessel wall. The presence of these outlier 
conditions is crucial to understand because they can lead to significant pathological 
outcomes, such as excessive intimal hyperplasia or plaque formation. The LHS approach 
ensures that these extreme values are not merely a product of random chance but are 
systematically included in the analysis. Consequently, the long right tail in the resulting 
distribution reflects a genuine risk of heightened SMC proliferation under specific, albeit 
less frequent, conditions. 



 

84 
 

 

Figure 27. Distribution of parameter α5 

The parameter 5, representing the probability of lipid infiltration, displays a nearly flat 
distribution across the range of sampled values. This characteristic indicates a relatively 
uniform likelihood of lipid infiltration occurring within the studied context, suggesting 
that the conditions influencing this process do not lead to significant peaks or troughs in 
probability. In a scenario where the probability distribution is flat, it implies that lipid 
infiltration can happen across a wide range of circumstances without being significantly 
influenced by any specific factor. Essentially, the chances of lipid accumulation remain 
consistent, irrespective of variations in other parameters or environmental conditions. 
This could be indicative of a physiological state where lipid infiltration is a common 
process occurring under various influences, rather than a response that is tightly linked 
to specific triggers or conditions. The flatness of the distribution suggests that lipid 
infiltration is a somewhat ubiquitous process within the arterial wall, potentially 
reflecting a baseline state where lipids are consistently present and integrated into the 
vessel environment. Factors contributing to this uniformity might include steady-state 
levels of circulating lipoproteins, consistent dietary influences, or a relatively constant 
state of endothelial function, which does not fluctuate dramatically across the sampled 
conditions. A flat distribution may also indicate that there is a lack of strong pathological 
stimuli that would otherwise concentrate the probability of lipid infiltration in particular 
scenarios. In other words, while lipid infiltration can occur, it does not appear to be 
heavily influenced by extreme conditions or changes in parameters, thus leading to a 
more even representation across the entire range. 
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Figure 28. Distribution of parameter α6 

The parameter 6 , which represents arterial remodeling driven by shear forces, exhibits 
a distribution characterized by a pronounced peak on the left side and a sharp drop-off 
towards the right. This shape suggests that most of the observations cluster around lower 
values, indicating that arterial remodeling due to shear forces typically occurs at minimal 
levels. The large peak signifies that the majority of cases involve mild to moderate 
remodeling in response to normal physiological conditions. This clustering of values at 
the lower end implies that under typical circumstances—such as healthy blood flow 
patterns—the remodeling processes in the arterial wall are subtle. These adaptations can 
include slight adjustments in smooth muscle cell behavior, minor changes in extracellular 
matrix composition, or other physiological mechanisms that support vascular function 
without leading to significant alterations in arterial structure. The rapid drop-off to the 
right indicates that as we move toward higher levels of 6, there are far fewer instances 
of pronounced arterial remodeling. This steep decline suggests that significant 
remodeling events driven by shear forces are relatively rare. When they do occur, they 
may be associated with specific pathological conditions, such as abnormal blood flow 
patterns, increased turbulence, or heightened hemodynamic stress. Such conditions can 
lead to substantial changes in arterial architecture, potentially contributing to vascular 
diseases or conditions like atherosclerosis. The presence of this distribution highlights 
the importance of understanding the normal range of arterial remodeling driven by shear 
forces. Most scenarios involve modest remodeling that is essential for maintaining 
vascular health. However, the few high values that fall off sharply to the right indicate 
potential risk factors or pathological states that warrant attention. Recognizing these rare 
but significant remodeling events is crucial for developing strategies to address and 
mitigate adverse cardiovascular outcomes. 
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Figure 29. Distribution of parameter α7 

The parameter 7, which represents remodeling driven by tensile forces, displays a 
distribution that is largely flat with a distinct peak on the left side. This shape indicates 
that most of the values are concentrated around lower levels of remodeling, suggesting 
that tensile forces typically exert a moderate influence on arterial structure. The presence 
of a prominent peak on the left signifies that the majority of cases involve minimal to 
moderate remodeling in response to normal tensile stresses experienced by the arterial 
walls during regular physiological conditions. These low-level adaptations are essential 
for maintaining the structural integrity and functionality of the artery under the forces 
exerted by blood flow. They may involve subtle changes, such as slight alterations in the 
composition or organization of the extracellular matrix or modest adjustments in smooth 
muscle cell activity. The flat nature of the distribution indicates that there is a broad range 
of values around this peak, suggesting that while most cases involve lower levels of 
remodeling, there is a significant variability in how arterial walls respond to tensile forces. 
This variability could be influenced by factors such as individual differences in vascular 
biology, local hemodynamic conditions, and the mechanical properties of the arterial wall 
itself. However, the lack of significant values extending towards the right side of the 
distribution implies that high levels of remodeling driven by tensile forces are relatively 
rare. When they do occur, they may be associated with specific conditions, such as 
pathological hypertension or significant vascular stress, which can lead to excessive 
remodeling that compromises arterial function. 
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Figure 30. Distribution of “initial plaque content” variable 

The initial distribution of plaque content exhibits a unique pattern characterized by 
several peaks on the left, followed by a gap, and then additional peaks on the right. This 
multimodal distribution suggests a complex relationship between various factors 
influencing plaque development within the arterial walls. The presence of multiple peaks 
on the left side of the distribution indicates that there are several common states of low 
plaque content, where the majority of cases fall. These peaks likely represent typical 
physiological conditions where minimal plaque accumulation occurs, reflecting healthy 
arterial function and effective regulatory mechanisms that prevent excessive lipid 
deposition and inflammation. Such states may be influenced by factors such as optimal 
shear stress, the presence of protective endothelial functions, and effective clearance of 
lipids and inflammatory cells from the arterial wall. The gap between the left and right 
peaks signifies a notable absence of cases with moderate plaque content, suggesting that 
this range may represent a transitional phase where arterial health is particularly 
vulnerable. This void could indicate that under normal physiological conditions, arteries 
tend to either remain relatively clear of plaque or progress to significant plaque 
accumulation due to a combination of risk factors such as elevated lipid levels, 
inflammation, and mechanical stress. The peaks on the right side of the distribution 
represent scenarios of higher plaque content, indicating that while most conditions tend 
to favor lower plaque levels, there are specific pathological states where significant 
plaque accumulation occurs. These peaks might reflect conditions of advanced 
atherosclerosis, where a combination of risk factors, such as chronic inflammation, 
prolonged exposure to high lipid levels, and mechanical stress, converge to drive 
substantial plaque formation.  

Once the descriptive statistics were reviewed, the next step involved calculating 
correlation matrices to assess the relationships between the different variables. This 
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allowed for an exploration of how different simulation parameters influenced each other. 
Pearson correlation coefficients were used to quantify the strength and direction of linear 
relationships between variables, while Spearman's rank correlation was used for non-
linear relationships. 

 

Figure 31. Correlation heatmap for input and output variables 

By examining the correlation matrix (Figure 31), it became clear that none of the 
parameters exhibit strong correlation neither with one another nor with the output. As 
atherosclerosis is a process dependent on parameters that do not behave in congruency 
with one another, the correlation matrix of this kind was expected and it confirmed that 
the simulation instances generated by LHS mimic real-world conditions and that the 
creation of a realistic virtual population was successful. Understanding these 
relationships was important to note that complex machine learning algorithms will be 
necessary in order to draw inference and recognize patterns in this data.   

Recognizing and addressing this issue early was key to ensuring that the next phases of 
analysis, such as PCA, were robust and reliable. Given the high dimensionality of the 
dataset, multiple parameters for each simulation case, PCA was applied to reduce the 
dimensionality and simplify the complexity of the data while retaining as much variance 
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as possible. The main goal of PCA was to transform the data into a new set of uncorrelated 
variables called principal components. These components represented the directions in 
which the data varied the most, allowing for a more efficient exploration of the key factors 
influencing plaque progression. 

The PCA process began by standardizing the data, ensuring that each variable had a mean 
of zero and a standard deviation of one. This step was crucial because PCA is sensitive to 
the relative scales of the variables; without standardization, variables with larger scales 
could dominate the first principal components, skewing the results. Once the data was 
standardized, the PCA algorithm was applied. The first principal component (PC1) 
explained the maximum amount of variance in the data, followed by the second 
component (PC2), and so on.  

A pairplot of features per class was used to visualize the percentage of variance explained 
by each principal component, helping to determine how many components should be 
retained for further analysis. In this case, the first few components typically explained a 
significant proportion of the variance, allowing the dataset to be reduced to a handful of 
principal components without sacrificing much information.  
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Figure 32. Pairplots of features per class 

The pairplot of features per class (Figure 32) provides the same conclusion as the 
correlation matrix and that is the fact that the features exhibit very low interclass 
variability and very high intraclass variability making them overlap in all cases except 
when plaque content (response variable) is considered. 

After application on individual variables, PCA was applied to the entire dataset in order 
to determine weather additional feature engineering will be necessary and to gain 
insights into the underlying structure of the data. Each principal component was a linear 
combination of the original variables, and the loadings of these variables indicated their 
contribution to the component. By examining the loadings, it was possible to understand 
which variables were the most important in driving plaque progression. For instance, PC1 
might heavily load on variables related to arterial stiffness and plaque thickness, 
indicating that these factors were the primary drivers of variance in the data. Additionally, 
scatter plots of the first two or three principal components were created to visualize how 
the simulation cases clustered in the reduced-dimensional space. These plots helped 
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identify any natural groupings or clusters of simulations, which could indicate different 
progression patterns. Outliers could also be easily spotted in these plots, offering a way 
to flag simulations with unusual behavior that warranted further investigation. 

 

Figure 33. PCA results 

After examining the PCA graph (Figure 33), which illustrates the distribution of the 
dataset in its original feature space, it is essential to consider the implications of reducing 
the dimensionality of the data. By transforming the data into a lower-dimensional space, 
we can effectively capture the most significant variance while minimizing the noise 
associated with irrelevant features. This process not only simplifies the complexity of the 
data but also enhances visualization, allowing for more straightforward interpretation of 
the underlying structure. The subsequent analysis was intended to focus on how this 
reduction facilitates better classification performance and provides clearer insights into 
the relationships among the data points. 
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Figure 34. Clusters in PCA-reduced feature space 

Due to the complexity of the problem and aforementioned high intraclass variability 
combined with low interclass variability, dimensionality reduction did not contribute to 
enhancing the PCA results. This has lead to a conclusion that significant data 
preprocessing will be necessary prior to the development of the machine learning 
algorithm.  

 

4.3.4. Dataset preprocessing 

Entire statistical analysis was done with the purpose of understanding the dataset better 
and being able to optimize the preparation of thereof for implementation of the AI 
algorithm. The analysis began by preparing the environment with the necessary tools for 
handling imbalanced data and Excel files. The dataset, which contained both input 
features and an output variable, was then uploaded from an Excel file. The relevant input 
features were selected for analysis, and the output variable, representing the target for 
classification, was extracted. This step ensured that the data was correctly formatted and 
ready for splitting into training and testing subsets. 

To develop and validate a predictive model, the dataset was divided into two parts: 80% 
was allocated for model training, and the remaining 20% was reserved for testing. A fixed 
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random seed was used to ensure consistency across different runs of the analysis, 
allowing for reproducibility in the results. 

Given that the dataset exhibited class imbalance, an advanced oversampling technique, 
Adaptive Synthetic Sampling (ADASYN), was applied. This method generates synthetic 
samples for underrepresented classes by creating data points that are similar to the 
minority class but slightly varied, ensuring a more balanced distribution. The goal was to 
equalize the representation of all target classes, which would otherwise lead to biased 
model training. The synthetic data generation process was tailored to create an equal 
number of samples for each class, ensuring that all classes were sufficiently represented. 

Following the resampling process, the newly balanced dataset was organized and saved 
for further analysis. The synthetic samples and the target labels were combined and 
exported to an Excel file, preserving the resampled data for future model development. 

To verify the effectiveness of the resampling technique, the distribution of the classes in 
the new dataset was assessed. The analysis confirmed that each class was now 
represented equally, validating the success of the synthetic sampling approach. By 
addressing the issue of class imbalance, the dataset was better prepared for model 
training, ensuring that the subsequent predictive models would not be biased toward the 
overrepresented classes and could produce more reliable and generalized predictions. 

 

4.4. ANN model 
The development of the classification model was introduced with challenges primarily 
arising from significant intraclass variability, which adversely affected predictive 
performance. To address these challenges, a systematic approach was adopted, 
incorporating both class and parameter weights alongside regularization techniques and 
optimized activation functions. This comprehensive strategy was essential in achieving a 
robust and reliable model capable of accurately predicting plaque progression in 
atherosclerosis. 

The issue was characterized by a disproportionate distribution of samples or intraclass 
variability across classes. Even though the sample size was consistent accross classess, an 
issue arises with overexpressed interclass similarity and lack of overall intraclass 
variability, leading to biased predictions, where the model favors outcomes more 
represented in a certain class. To counter this, class weights were assigned to each class, 
strategically focusing on enhancing the model's sensitivity to the most sensitive class, that 
being „insignificant atherosclerotic progression“  

Class weights were calculated based on the inverse frequency of each class, reflecting the 
necessity for the model to prioritize learning from underrepresented samples. For 
instance, class 0 was assigned a weight of 3.0, while classes 1 and 2 received weights of 
1.5 and 2.5, respectively. By implementing these weights, the model was empowered to 
treat the loss function as a more balanced representation of the underlying class 
distribution, thereby compensating for the imbalance.  

In conjunction with class weights, parameter weights were integrated into the training 
process to further refine the model's learning dynamics. Parameter weights were 
assigned based on the importance of each feature, which enabled the model to prioritize 
more influential variables during training. This adjustment facilitated enhanced learning 
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from critical features, allowing the model to effectively distinguish between classes. The 
dual implementation of class and parameter weights resulted in substantial 
improvements in performance metrics, such as accuracy, recall, and F1 scores, 
particularly for the minority classes. The model's ability to correctly classify instances 
from these underrepresented groups improved significantly, thereby leading to a more 
equitable performance across all classes. 

To further mitigate the risk of overfitting—a common issue in machine learning where 
the model learns the noise in the training data rather than the underlying patterns—
regularization techniques were employed. L2 regularization (also known as weight 
decay) was incorporated into the loss function, which penalizes large weights and 
discourages the model from fitting noise in the training data. This technique is particularly 
beneficial in high-dimensional spaces, where overfitting is prevalent due to the 
abundance of features relative to the number of training samples. By applying L2 
regularization, the model was encouraged to learn a simpler representation of the data, 
which improved generalization to unseen data. Regularization not only enhanced the 
model’s robustness but also led to improved interpretability of the learned parameters. 
The model was able to focus on the most relevant features while minimizing the impact 
of irrelevant or redundant features, thereby streamlining the decision-making process. 
This strategic modification was pivotal in enhancing the model's overall reliability and 
predictive capability. 

The choice of activation functions significantly influenced the model’s performance and 
learning efficiency. The Rectified Linear Unit (ReLU) activation function was utilized in 
the hidden layers, promoting faster convergence and allowing the model to capture 
complex relationships within the data effectively. ReLU addresses the vanishing gradient 
problem, which is common in traditional activation functions like sigmoid or tanh, by 
maintaining non-zero gradients for positive input values. This characteristic enables 
deeper networks to learn more efficiently, as the gradients do not diminish as they are 
backpropagated through the network layers. The softmax activation function was 
employed in the output layer, generating a probability distribution across the target 
classes. This approach allowed for interpretable output, where the class with the highest 
probability score was selected as the model's prediction. The softmax function effectively 
normalized the output scores, making it easier to assess the relative confidence of the 
model in its predictions. The combination of ReLU and softmax functions ensured that the 
model was not only capable of learning complex patterns but also provided a probabilistic 
framework for decision-making. 

Two architectures were intensively tested to determine the impact of hyperparameter 
adjustment and architecture remodeling on the prediction results.  

 

Table 23. Comparison of key ANN parameters between the two developed architectures 

Parameter Definitio
n 

Purpose Impact on 
Training 

Mechanis
m 

Architectur
e 1 VS 2 

Regularizatio
n Strength 

Controls 
penalty on 
weights 
for 

Prevent 
overfittin
g 

Affects model 
complexity; 
high = 
underfit, low 
= overfit 

Adds 
penalty to 
the loss 
function 

L2 (0.01) 
VS 

L2 (0.0001) 
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complexit
y 

Training 
Duration 
(Epochs) 

Number 
of 
complete 
passes 
over the 
dataset 

Determin
e learning 
time 

Low = 
underfit, high 
= overfit 

Each epoch 
involves 
forward 
and 
backward 
pass 

100 epochs 
VS 

400 epochs 

Batch Size Number 
of 
samples 
processed 
before 
weight 
updates 

Controls 
update 
frequency 

Small = noisy 
but better 
generalizatio
n, large = 
smoother but 
potential 
overfit 

Subset of 
data used 
for gradient 
computatio
n 

Batch size 
16 
VS 

Batch size 8 

 

Regularization strength is a critical hyperparameter that plays a vital role in managing 
model complexity. Its main purpose is to prevent overfitting, which occurs when a model 
learns not only the underlying patterns in the training data but also the noise. 
Regularization achieves this by adding a penalty to the loss function, which discourages 
the model from assigning excessive importance to any particular weight. When 
regularization strength is high, the model is forced to simplify, which can lead to 
underfitting; in other words, it may not learn enough from the data. Conversely, when the 
regularization strength is low, the model can become too complex, capturing not just the 
essential features of the data but also the random fluctuations, resulting in overfitting. 
Different types of regularization, such as L1 and L2, have unique characteristics, with L1 
potentially leading to sparse solutions (many weights becoming zero) and L2 shrinking 
all weights but retaining more features. Overall, the choice of regularization strength is 
crucial as it directly impacts the model's generalization ability. The choice of a lower L2 
regularization strength (0.001 VS 0.1) may significantly affect the model's ability to 
generalize beyond the training data. Regularization is intended to prevent overfitting by 
penalizing overly complex models. A lower L2 regularization strength means that the 
model is less constrained, allowing it to assign larger weights to features. While this can 
help the model capture more nuances in the training data, it may also result in a higher 
risk of overfitting. Consequently, the model might perform well on the training dataset 
but struggle with unseen data due to its excessive reliance on specific patterns that do not 
hold in a broader context. Therefore, while a lower regularization strength can lead to 
improved performance during training, it can ultimately compromise the model’s 
generalization ability. 

Training duration, measured in epochs, refers to how many times the model is exposed to 
the entire training dataset. The main goal of determining the right number of epochs is to 
ensure that the model learns effectively from the data. If the number of epochs is too low, 
the model may not have enough opportunities to learn, resulting in underfitting. This 
means the model fails to capture essential patterns within the data. On the other hand, too 
many epochs can lead to overfitting, where the model becomes excessively tailored to the 
training data and performs poorly on unseen data. To strike the right balance, validation 
loss during training is monitored and strategies like early stopping employed, which halts 
training when performance on a validation set begins to degrade. Thus, training duration 
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is about finding the sweet spot where the model learns adequately without memorizing 
the training data. By opting for a longer training duration, the model has more 
opportunities to learn from the training data. This extended exposure can be beneficial, 
particularly if the training set is complex or large. However, it also increases the risk of 
overfitting, especially if the model is not regularized adequately. Monitoring validation 
performance is crucial during this phase to ensure that the model is improving its ability 
to generalize rather than merely memorizing the training examples. 

Batch size is the number of training samples processed before the model's weights are 
updated. It directly influences how the model learns during training. Choosing a small 
batch size results in more frequent updates to the model's weights, which can lead to 
noisier gradient estimates. This noise can sometimes help the model generalize better, as 
it introduces variability in the training process. However, smaller batches can also slow 
down training since more iterations are needed to complete an epoch. In contrast, a larger 
batch size means fewer updates per epoch, leading to smoother gradient estimates. While 
this can accelerate training and make better use of computational resources (like GPUs), 
it may also lead to poorer generalization, as the model could get stuck in sharp minima 
that don't perform well on unseen data. Therefore, the choice of batch size should 
consider the trade-offs between computational efficiency and model performance. 
Choosing a smaller batch size means the model updates its weights more frequently. 
While this can introduce beneficial noise into the gradient estimates—potentially aiding 
in convergence—it also means that each update might be less stable. The noise can help 
escape local minima but can also slow down the convergence process as the model may 
take longer to find the optimal solution. Additionally, because smaller batches require 
more iterations to complete an epoch, this can significantly extend the total training time. 

The decisions made in the second architecture reflect a careful balance between 
improving model performance and managing the risks associated with overfitting. A 
lower L2 regularization strength, while potentially enhancing training performance, 
could hinder the model's generalization ability. Meanwhile, the combination of a longer 
training duration and a smaller batch size facilitates a more nuanced learning process but 
at the cost of increased training time. Together, these choices highlight the importance of 
tuning hyperparameters thoughtfully to achieve a well-balanced model that performs 
well on both training and unseen data. 

 

 

4.4.1. ANN performance evaluation 

In this section, the performance of the developed artificial neural network (ANN) is 
evaluated by examining the impact of incorporating class and feature weights during 
training. The objective is to assess how these adjustments affect the model's performance 
in terms of loss and accuracy, particularly in the context of an imbalanced dataset. A 
comparative analysis was conducted involving two distinct training configurations for our 
ANN: the standard model without any weighting and the enhanced model that utilized 
class and feature weights. The standard model served as a baseline, while the enhanced 
model aimed to address the inherent challenges posed by class imbalance and to amplify 
the influence of critical features identified during the initial analysis. 
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Class weights were computed based on the frequency of each class in the dataset. This 
approach ensures that the model pays more attention to underrepresented classes, 
effectively countering the bias that can occur when training on imbalanced data. By 
assigning higher weights to these classes, the model is encouraged to learn more from the 
less frequent examples, thus improving its overall performance. Feature weights were 
employed to prioritize the most influential input parameters during the training process. 
This strategy enhances the model's ability to focus on features that significantly 
contribute to class differentiation, potentially leading to a more nuanced understanding 
of the underlying patterns within the data. 

In analyzing the loss curves, the standard ANN configuration displayed significant 
fluctuations throughout the training epochs. This instability suggested that the model 
struggled to find a reliable convergence point, which is often indicative of overfitting—
where the model performs well on training data but poorly on validation data. Conversely, 
the implementation of class and feature weights resulted in a markedly smoother decline 
in both training and validation loss. The reduced variability in the loss curves reflects the 
model’s improved stability, suggesting that the weights helped to regularize the training 
process and enabled the ANN to generalize better to unseen data. 

 

 

 

Figure 35. Loss over epochs graph for architecture 1 

The first achitecture employed an early stopping method and the training was halted at 
epoch 50 as convergence of training and validation loss was achieved. However, the 
training and validation curves converget at loss of 0.6 which is considered high. 
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Figure 36. Loss over epochs graph for architecture 2 

The second architecture did not include the early stoping criterion and the training was 
conducted up to 300 epochs. Even though the loss curves did not converge as in the first 
case, the local minima was achieved at 0.4 for the training dataset and 0.25 for the 
validation dataset. Hence, the predictive and generalization capabilities of the second 
model were shown to improve.  

 

 

Figure 37. Accuracy plot for architecture 1 

The accuracy over epochs plot for the first scenario is characteristic for significant 
overfitting. The abrupt peaks in the curve indicate that the accuracy is unstable over 
epochs and even though the model converges in terms of loss, its predictive accuracy is 
very low (0.7). 
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Figure 38. Accuracy plot for architecture 2 

. 

Compared to the accuracy plot of the first instance, the accuracy plot for the adjusted 
architecture is much smoother and training and validation accuracy converge at above 
0.9 indicating very high and trustworth predictive capability of the model.  

The most compelling evidence of the performance improvement emerged from the 
accuracy analysis. The standard model achieved a peak validation accuracy of only 0.68, 
indicating that a significant portion of predictions were incorrect, particularly for the less 
frequent classes. However, when class and feature weights were introduced, the 
validation accuracy soared to 0.9. This dramatic increase of 27 percentage points not only 
signifies a substantial enhancement in predictive performance but also illustrates the 
model's newfound capability to accurately classify instances across all classes, including 
those that were previously misclassified. 

Table 24. Performance metrics comparison 

Performance metric Score architecture 1 Score architecture 2 

Accuracy 0.681 0.909 

Recall 0.679 0.905 

F1 score 0.684 0.903 

MCC 0.523 0.871 

Sensitivity 0.571 1.0 0.714 1.0 0.714 0.750 
Specificity 0.733 0.933 1.0 0.923 0.933 0.857 

 

The improvement in accuracy (Table 24) underscores the effectiveness of utilizing 
weights, as it highlights the model's enhanced ability to discern between similar classes, 
which is particularly vital in medical applications where accurate classifications can have 
critical implications. 

In order to evaluate the performance of the ANN in more detail, ROC curves, AUC scores 
(Figure 39.) and precision-recall curves (.) were analzed for all 3 classes durring training.  
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Figure 39. ROC curves for each class 

An AUC of 0.94, 0.96, and 0.98 for the three classes of plaque progression prediction 
indicates the model's excellent discriminatory performance across all stages of 
progression. The AUC of 0.94 suggests that the model is highly effective in distinguishing 
the first class of plaque progression, capturing the critical risk factors associated with it. 
The AUC of 0.96 for the second class indicates an even stronger capability to identify 
patients at risk, implying improved sensitivity and specificity in detecting subtle changes 
in plaque characteristics. Lastly, the AUC of 0.98 for the third class highlights an 
exceptional classification ability, demonstrating the model's capacity to accurately 
identify patients at the highest risk of plaque progression. These high AUC values signify 
that the model not only excels in classifying plaque progression stages but also 
underscores its potential application in clinical settings for personalized risk assessment 
and management. The impressive performance across all classes suggests that the model 
can effectively assist healthcare professionals in making informed decisions regarding 
patient care and interventions, ultimately contributing to improved outcomes in 
cardiovascular health. 
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Figure 40. Precision-recall curves for each class 

The average precision scores of 0.90, 0.93, and 0.97 for the precision-recall curves 
indicate a compelling trend in the model's performance across the three classes of plaque 
progression prediction. These scores reflect the model's capacity to effectively distinguish 
between true positive instances and false positives, showcasing an increase in precision 
as the severity of plaque progression escalates. In clinical terms, high precision is critical, 
as it suggests that when the model predicts a positive outcome, it is highly likely to be 
correct. A precision of 0.90 indicates that 90% of the identified positive cases in the first 
class are true positives, while 0.97 in the most advanced class suggests an excellent ability 
to identify those at greatest risk with minimal misclassification. This improvement 
highlights the model's potential utility in risk stratification, enabling healthcare providers 
to focus interventions on those who are more likely to benefit from them. Moreover, the 
increasing precision suggests that the model not only identifies patients effectively but 
also provides confidence in its predictions. This characteristic is essential in a clinical 
setting, where false positives can lead to unnecessary stress and interventions for 
patients. As the model approaches a precision score of 1.0, it indicates an exemplary 
performance, which could significantly enhance decision-making processes in managing 
plaque progression and related cardiovascular risks. Ultimately, these precision-recall 
scores underscore the potential of the predictive model in a healthcare context, 
advocating for its application in clinical practices for improved outcomes in patients at 
risk of significant cardiovascular events associated with plaque progression.  

 

4.4.2. Comparison to state of the art 

Han et al. (2020) (Han et al., 2020) integrated coronary computed tomography 
angiography-determined qualitative and quantitative plaque features within a machine 
learning (ML) framework to determine its performance for predicting rapid coronary 
plaque progression (RPP). They have used CTA data from 1083 patients and tested 
several machine learning algorithms to achieve an AUC of 0.618 for the model where only 
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clinical and laboratory variables were used and 0.833 when clinical and laboratory 
variables were combined with qualitative and quantitative CT variables. A significant 
aspect of their methodology was the proactive approach to address feature importance 
within their dataset. Predictive classifiers for prediction of RPP were developed using an 
ensemble classification approach (“boosting”) where a set of weak base classifiers can be 
combined to create a single strong classifier by iteratively adjusting their appropriate 
weighting according to misclassifications.  

Rosandeel et al. (2018) (van Rosendael et al., 2018)  aimed  to investigate whether a ML 
score, incorporating only the 16 segment coronary tree information derived from 
coronary computed tomography angiography (CCTA), provides enhanced risk 
stratification compared with current CCTA based risk scores. In a study that involved 
8844 patients with no known history of CAD and employed a methodology where a total 
35 CCTA variables (stenosis severity and plaque composition considering the 16 coronary 
segments, 2 variables for posterolateral branch when dominance was unknown and 
coronary artery dominance) were incorporated in the machine learning score. A machine 
learning algorithm based on XGBoost achieved an AUC of 0.84. 

In a previous study (Spahić et al., 2023) we have conducted using data mining and 
artificial neural networks to predict coronary plaque progression the aim was to 
determine the risk and pace of progression of CATS, based on lipid-species, anti-
thrombotic drugs, clinical data, risk factors and general biomarkers. The methodology 
relied on feature selection using ReliefF, MRMR & wrapper techniques followed by a 
simple architecture of ANN. The overall achieved accuracy of 0.81 was satisfactory, 
however the classification power of the developed system was significantly hindered by 
low specificity indicating that the ANN does not generalize well for the insignificant 
plaque progression samples. This problem persisted across all iterations of the ANN 
considering significant class imbalance of the dataset where only 22% of the data 
corresponded to the minority class. 

Corti et al., (2023) have developed a surrogate model to be coupled with FEM as a 
substitute for the previously employed agent based model to reduce the computational 
cost by preserving the modeling accuracy. The surrogate models were (i) used to explore 
the relation between the ABM parameters and the global outputs, and (ii) employed in the 
calibration process, in which the selected ABM parameters were calibrated through 
genetic algorithm optimization. The developed surrogate model achieved an R2 in the 
range from 0.985-0.995 indicating high fidelity and potential to substitute the 
computationally-intensive ABM.  

 

 

 

Table 25. State of the art benchmarking 

Aspect Rosandeel et 
al. (2018) 

Han et al. 
(2020) 

Spahic et al.  
(2023) 

Corti et al. 
(2023) 

Model in this 
study 

Model 
Structure XGBoost 

Ensemble 
models 

Simple ANN 
with 

employed 

Surrogate 
model based 

on 

Advanced 
ANN with 

ABM 
parameters 
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regularizatio
n 

physiological 
data 

Moderate 
complexity, 

less dynamic 

Employing an 
iterative 

LogitBoost 
algorithm 

Captures 
complex 
feature 

interactions 

Limited in 
complex 
feature 

interactions 

Captures 
complex 
feature 

interactions 

Feature 
Engineering 

CT images 
and CCTA 

scores 

clinical and 
laboratory 
variables & 

CT variables 

Feature 
selection 

using ReliefF, 
MRMR & 
wrapper 

technigues 

Physiological 
and imaging 

data 

Includes 
simulation-
based ABM 
parameters 

Feature 
importance 

score 
assessment 

information-
gain 

attribute 
ranking 

SMOTE 
algorithm to 
address class 

imbalance 

Focuses on 
physiological 

modeling 

ADASYN 
class 

imbalance 
mitigation 

and feature 
weighing 

Performance 
Metrics 

AUC 
0.84 

AUC 
0.618 – 0.833 

Accuracy: 
81.81%, 

Sensitivity: 
96%, 

Specificity: 
37.5% 

R2 
0.985-0.995 

Accuracy: 
90.9%, 

Sensitivity: 
82.1%, 

Specificity: 
90.3% . 

Computational 
Efficiency 

Moderate 
resource 

requirements 

Moderate 
resource 

requirements 

Scalable 
architecture 
with lower 

resource 
demands 

Requires 
significant 
resources 

Low 
resource 

requirement 

Feasible for 
many settings 

Resource-
intensive 

becuase of 
image 

processing 

Suitable for 
clinical 

applications 

May limit 
practical 

applicability 

Feasible for 
many 

settings 

 

4.5. Integration into DECODE cloud platform 
Through the seamless integration of ABM and AI into the DECODE cloud platform via an 
API, the system will be able to harness the best of both worlds: the detailed simulation of 
biological processes and the predictive power of AI. To achieve this integration, a robust 
API framework will be developed, allowing the DECODE platform to interface with both 
the ABM and AI systems. The API will serve as a bridge, handling the flow of data between 
the cloud-based platform, the simulation models, and healthcare providers. By employing 
adaptable architectures, the system ensures scalability, reliability. 

The ABM module simulates the behavior of individual agents (such as cells, proteins, or 
plaques) within the arterial environment, capturing the dynamic interactions that 
contribute to disease progression, particularly in conditions like atherosclerosis. The 
integration of ABM into DECODE will involve deploying the model on the cloud. This 
allows for the detailed and resource-intensive simulations required for accurate modeling 
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of biological processes. Once the ABM is integrated, the API will facilitate the following 
workflow: 

• Input of patient-specific data: Clinical data, such as imaging results, biochemical 
markers, and patient demographics, will be submitted through the API. This data 
will be pre-processed by the DECODE platform and then sent to the ABM module 
for simulation. 

• Execution of ABM simulations: The API will initiate the simulation of disease 
progression within the ABM, simulating how individual agents behave and interact 
in the vascular system. The model will run in parallel, allowing multiple 
simulations to take place concurrently. 

• Return of simulation results: The API will return the results of these simulations 
to the DECODE platform, where the data can be analyzed, visualized, and compared 
with patient data to enhance diagnosis or treatment planning. This could include 
insights into plaque progression, risk of rupture, and treatment outcomes. 

The integration of AI models adds an essential layer of predictive power and machine 
learning to the DECODE platform. By leveraging AI algorithms, the system can process 
large datasets, identify complex patterns, and generate patient-specific predictions that 
evolve over time. AI is trained on multimodal datasets, combining clinical data, genetic 
information, and imaging results to predict plaque progression, intervention success, and 
disease outcomes. The integration of AI follows a similar workflow facilitated by the API: 

• Data input and preprocessing: The DECODE platform will use the API to feed the 
AI models with the same patient-specific data utilized by the ABM, including any 
new data collected over time. 

• AI-driven predictions: The AI module, powered by advanced machine learning 
algorithms, will analyze the data to predict atherosclerotic plaque behavior and 
assess the risk of peripheral artery disease progression. The API ensures that the 
AI model can continuously update predictions as new patient data becomes 
available, making the platform adaptive and real-time. 

• Feedback to DECODE platform: The API will facilitate the return of AI-driven 
insights, which can then be displayed to clinicians via the DECODE interface, 
supporting decision-making with precise, data-driven guidance. 

The combined integration of ABM and AI allows for a powerful synergy within the 
DECODE platform. While ABM provides mechanistic insights into the behavior of 
biological agents, AI enhances the system by learning from vast amounts of data, offering 
predictions that can be continuously refined. The API will act as the central conduit, 
enabling the smooth exchange of data between these two models. For example, the results 
from ABM simulations can serve as input features for the AI model, further refining 
predictions and offering a holistic understanding of patient-specific disease progression. 
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5. Conclusion 
In this research, the transformative potential of artificial intelligence and agent-based 
modeling in understanding and managing cardiovascular diseases, particularly 
atherosclerosis, was investigated. Agent-based modeling has provided a robust 
framework for simulating complex biological interactions and understanding the 
multifaceted nature of cardiovascular disease development. By modeling the behaviors of 
individual agents, such as cells and tissues, ABM has elucidated critical mechanisms 
underlying plaque formation and progression, revealing insights that could inform 
targeted therapeutic strategies. The findings demonstrate that AI, through advanced 
machine learning and deep learning techniques, significantly enhances the early detection 
of atherosclerosis and improves risk stratification by analyzing large and diverse datasets 
from electronic health records, medical imaging, and genetic profiles. The integration of 
AI has shown the capacity to identify patterns and predict disease progression with a level 
of accuracy that can surpass traditional methods, thereby offering new avenues for 
personalized patient care.  

However, this research also highlighted the inherent limitations associated with both 
methodologies. Issues related to data quality, model interpretability, and the complexity 
of biological systems underscore the need for ongoing refinement and validation of these 
models. Overcoming these challenges is essential for ensuring the reliability and 
applicability of ABM and AI in clinical settings. 

ABM serves as a powerful tool for simulating the intricate interactions among various 
biological agents, such as cells and tissues, within the cardiovascular system. By 
representing each agent with unique behaviors and interactions, ABM can illuminate how 
individual cellular activities contribute to the development and progression of 
cardiovascular diseases. As shown in this research, ABM has successfully simulated 
plaque progression and the utilized methodology was confirmed as congruent with 
patient data. However, in cases where extreme variations of simulation parameters were 
introduced, the ABM failed in accurately capturing the plaque progression pattern, and 
provided results that are unexpected in real-world scenarios. This is due to the fact that 
the complexity of biological systems poses significant challenges. The intricate interplay 
of multiple factors, including genetic, environmental, and lifestyle influences, makes it 
difficult to capture the full spectrum of interactions in a comprehensive model. ABM 
requires extensive data for parameterization and validation, often necessitating high-
quality biological and clinical datasets. These data may not always be readily accessible, 
and any inconsistencies or biases in the dataset can lead to misleading conclusions. The 
calibration of ABM is another crucial step, as it requires meticulous attention to detail to 
ensure that the model accurately reflects biological realities. This process can be time-
consuming and resource-intensive, often requiring advanced expertise and 
computational power. In addition, ABM outcomes can be sensitive to variations in 
parameters. Small changes in how agents interact can lead to significant differences in 
model predictions, making it essential for researchers to conduct thorough sensitivity 
analyses. However, identifying the most impactful parameters can be a complex task, 
often requiring extensive experimentation and iteration. 

On the other hand, AI modeling—especially machine learning and deep learning 
techniques—has revolutionized the analysis of large datasets in cardiovascular medicine. 
These algorithms excel at identifying patterns within electronic health records, medical 
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imaging, and genetic profiles, potentially leading to early detection and improved risk 
stratification for patients. Yet, the reliance on data quality is a double-edged sword. If the 
input data is incomplete, noisy, or biased, the AI model's predictions may be flawed, 
potentially leading to detrimental clinical outcomes. The dynamic nature of 
cardiovascular diseases adds another layer of complexity. As patients undergo treatment 
and lifestyle changes, their cardiovascular status evolves. AI models may struggle to keep 
pace with these changes, leading to outdated or irrelevant predictions that fail to address 
the patient's current health status. Surrogate modeling opens an avenue for creating AI-
based models by using virtual populations generated by running simulations such as 
ABM. The surrogate model for atherosclerotic plaque progression developed in this 
research was based on artificial neural networks and deep learning. The model was 
developed on the basis of a comprehensive dataset created for the purpose of the 
development of the surrogate model. The dataset captured a landscape of patient-specific 
variability and provided significant variation for the model to learn. The model performed 
with 90.9% accuracy and congruency with the ABM indicating its strong potential to be 
used in practice. 

While both ABM and AI modeling present unique opportunities to advance cardiovascular 
medicine, their limitations must be thoughtfully addressed. By continuing to advance 
these innovative approaches, we can significantly enhance our understanding of 
cardiovascular diseases, leading to more precise risk assessments, personalized 
treatment plans, and improved patient outcomes. Creating interpretable AI and ABM 
models is vital for fostering trust among healthcare providers and patients. Stakeholders 
must prioritize transparency in model design, enabling clinicians to understand how 
predictions are made and empowering them to explain these insights to patients. This 
interpretability is essential for gaining acceptance in clinical settings, where decisions are 
often based on a combination of evidence, experience, and patient preferences. 
Additionally, ethical considerations must be at the forefront of research and 
implementation, ensuring that AI and ABM applications do not perpetuate biases or 
inequities in healthcare. To translate research findings into tangible benefits for patients, 
ongoing validation studies are necessary. These studies should involve diverse patient 
populations to ensure that models are generalizable and effective across different 
demographics. Real-world clinical trials can provide valuable feedback on the usability 
and efficacy of AI and ABM systems, paving the way for their adoption in everyday clinical 
practice. 
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